44 research outputs found

    DETECÇÃO DE ÁRVORES EM NUVENS DE PONTOS DE VARREDURA LASER TERRESTRE

    No full text
    A utilização do laser terrestre para levantamentos em povoamentos florestais tem como objetivo prover dados à modelagem tridimensional das árvores, no entanto, para que seja possível aplicar tal modelo, é necessário realizar a detecção dos pontos que fazem parte de árvores na varredura. O presente estudo propõe um método para a detecção de árvores a partir da nuvem de pontos 3D de plantios florestais. Inicialmente, procura-se reconstituir a distribuição espacial das árvores a partir da aplicação de um algoritmo de segmentação em uma seção transversal (1 metro) da nuvem de pontos. Em seguida, é apresentado um algoritmo para detectar a posição das árvores com base no padrão de alinhamento do povoamento. Por fim, os resultados obtidos são apresentados para validação pelo usuário da nuvem de pontos. O método apresentado foi testado em parcelas circulares instaladas em povoamentos de Eucalyptus spp. levantados por varreduras simples e múltiplas. Os resultados apontaram a necessidade de utilização de múltiplas estações de TLS para redução do efeito de sombreamento no levantamento das parcelas circulares. A aplicação do método de detecção de árvores em conjunto com a análise visual resultou na identificação de 100% das árvores a partir das nuvens de pontos das parcela

    Two Statistical Tools for Assessing Functionality and Protein Characteristics of Different Fava Bean (Vicia faba L.) Ingredients

    No full text
    Fava bean (Vicia faba L.) is a promising source of proteins that can be potentially used as nutritional and/or functional agents for industrial food applications. Fava ingredients are industrially produced, modified, and utilized for food applications. Their processing conditions influence physico-chemical protein properties that further impact ingredient functionality. To design a functionally suitable ingredient, an understanding of the interrelationships between different properties is essential. Hence, this work aimed to assess two statistical analytical tools, Pearson’s correlation and Principal Component Analysis (PCA), for investigating the role of the process conditions of fava ingredients on their functional and protein properties. Fava concentrates were processed by pH (2, 4, 6.4 and 11), temperature (55, 75 and 95 ∘C) and treatment duration (30 and 360 min) into different modified ingredients. These were utilized under two application conditions (pH 4 and 7), and their foam and emulsion properties as well as their ingredient characteristics (charge, solubility, and intrinsic fluorescence) were measured. The results show that foam and emulsion properties are not correlated to each other. They are associated with different protein and non-protein attributes as fava concentrate is a multi-component matrix. Importantly, it is found that the results from the two statistical tools are not fully comparable but do complement each other. This highlights that both statistical analytical tools are equally important for a comprehensive understanding of the impact of process conditions on different properties and the interrelationships between them. Therefore, it is recommended to use Pearson’s correlation and principal component analysis in future investigations of new plant-based proteins
    corecore