300 research outputs found

    The many faces of LINER-like galaxies: a WISE view

    Full text link
    We use the SDSS and WISE surveys to investigate the real nature of galaxies defined as LINERs in the BPT diagram. After establishing a mid-infrared colour W2-W3 = 2.5 as the optimal separator between galaxies with and without star formation, we investigate the loci of different galaxy classes in the W_{Ha} versus W2-W3 space. We find that: (1) A large fraction of LINER-like galaxies are emission-line retired galaxies, i.e galaxies which have stopped forming stars and are powered by hot low-mass evolved stars (HOLMES). Their W2-W3 colours show no sign of star formation and their Ha equivalent widths, W_{Ha}, are consistent with ionization by their old stellar populations. (2) Another important fraction have W2-W3 indicative of star formation. This includes objects located in the supposedly `pure AGN' zone of the BPT diagram. (3) A smaller fraction of LINER-like galaxies have no trace of star formation from W2-W3 and a high W_{Ha}, pointing to the presence of an AGN. (4) Finally, a few LINERs tagged as retired by their W_{Ha} but with W2-W3 values indicative of star formation are late-type galaxies whose SDSS spectra cover only the old `retired' bulge. This reinforces the view that LINER-like galaxies are a mixed bag of objects involving different physical phenomena and observational effects thrusted into the same locus of the BPT diagram.Comment: Accepted for publication in MNRAS; 9 pages, 6 figure

    Rare quantum metastable states in the strongly dispersive Jaynes-Cummings oscillator

    Get PDF
    We present evidence of metastable rare quantum-fluctuation switching for the driven dissipative Jaynes-Cummings oscillator coupled to a zero-temperature bath in the strongly dispersive regime. We show that single-atom complex amplitude bistability is accompanied by the appearance of a low-amplitude long-lived transient state, hereinafter called `dark state', having a distribution with quasi-Poissonian statistics both for the coupled qubit and cavity mode. We find that the dark state is linked to a spontaneous flipping of the qubit state, detuning the cavity to a low-photon response. The appearance of the dark state is correlated with the participation of the two metastable states in the dispersive bistability, as evidenced by the solution of the Master Equation and single quantum trajectories.Comment: Extensively revised text, 18 revised figures (16 in main and 2 in appendix), 38(+1) references, appendi

    Extending Barrett’s esophagus cancer risk profile towards genetic abnormalities

    Full text link

    The cosmic evolution of the spatially-resolved star formation rate and stellar mass of the CALIFA survey

    Get PDF
    We investigate the cosmic evolution of the absolute and specific star formation rate (SFR, sSFR) of galaxies as derived from a spatially-resolved study of the stellar populations in a set of 366 nearby galaxies from the CALIFA survey. The analysis combines GALEX and SDSS images with the 4000 break, H_beta, and [MgFe] indices measured from the datacubes, to constrain parametric models for the SFH, which are then used to study the cosmic evolution of the star formation rate density (SFRD), the sSFR, the main sequence of star formation (MSSF), and the stellar mass density (SMD). A delayed-tau model, provides the best results, in good agreement with those obtained from cosmological surveys. Our main results from this model are: a) The time since the onset of the star formation is larger in the inner regions than in the outer ones, while tau is similar or smaller in the inner than in the outer regions. b) The sSFR declines rapidly as the Universe evolves, and faster for early than for late type galaxies, and for the inner than for the outer regions of galaxies. c) SFRD and SMD agree well with results from cosmological surveys. At z< 0.5, most star formation takes place in the outer regions of late spiral galaxies, while at z>2 the inner regions of the progenitors of the current E and S0 are the major contributors to SFRD. d) The inner regions of galaxies are the major contributor to SMD at z> 0.5, growing their mass faster than the outer regions, with a lookback time at 50% SMD of 9 and 6 Gyr for the inner and outer regions. e) The MSSF follows a power-law at high redshift, with the slope evolving with time, but always being sub-linear. f) In agreement with galaxy surveys at different redshifts, the average SFH of CALIFA galaxies indicates that galaxies grow their mass mainly in a mode that is well represented by a delayed-tau model, with the peak at z~2 and an e-folding time of 3.9 Gyr.Comment: 23 pages, 16 figures, 6 tables, accepted for publication in Astronomy & Astrophysics. *Abridged abstract

    The spatially resolved star formation history of CALIFA galaxies: Cosmic time scales

    Full text link
    This paper presents the mass assembly time scales of nearby galaxies observed by CALIFA at the 3.5m telescope in Calar Alto. We apply the fossil record method of the stellar populations to the complete sample of the 3rd CALIFA data release, with a total of 661 galaxies, covering stellar masses from 108.4^{8.4} to 1012^{12} M_{\odot} and a wide range of Hubble types. We apply spectral synthesis techniques to the datacubes and process the results to produce the mass growth time scales and mass weighted ages, from which we obtain temporal and spatially resolved information in seven bins of galaxy morphology and six bins of stellar mass (M_{\star}) and stellar mass surface density (Σ\Sigma_{\star}). We use three different tracers of the spatially resolved star formation history (mass assembly curves, ratio of half mass to half light radii, and mass-weighted age gradients) to test if galaxies grow inside-out, and its dependence with galaxy stellar mass, Σ\Sigma_{\star}, and morphology. Our main results are as follows: (a) The innermost regions of galaxies assemble their mass at an earlier time than regions located in the outer parts; this happens at any given M_{\star}, Σ\Sigma_{\star}, or Hubble type, including the lowest mass systems. (b) Galaxies present a significant diversity in their characteristic formation epochs for lower-mass systems. This diversity shows a strong dependence of the mass assembly time scales on Σ\Sigma_{\star} and Hubble type in the lower-mass range (108.4^{8.4} to 1010.4^{10.4}), but a very mild dependence in higher-mass bins. (c) All galaxies show negative \langlelog ageM\rangle_{M} gradients in the inner 1 HLR. The profile flattens with increasing values of Σ\Sigma_{\star}. There is no significant dependence on M_{\star} within a particular Σ\Sigma_{\star} bin, except for the lowest bin, where the gradients becomes steeper.Comment: 15 pages, 13 figures, 3 tables, accepted for publication in Astronomy & Astrophysics. *Abridged abstract

    Photoelectron diffraction investigation of the structure of the clean TiO2(110)(1×1) surface

    Get PDF
    The surface relaxations of the rutile TiO2(110)(1×1) clean surface have been determined by O 1 s and Ti 2p3∕2 scanned-energy mode photoelectron diffraction. The results are in excellent agreement with recent low-energy electron diffraction (LEED) and medium energy ion scattering (MEIS) results, but in conflict with the results of some earlier investigations including one by surface x-ray diffraction. In particular, the bridging O atoms at the surface are found to relax outward, rather than inward, relative to the underlying bulk. Combined with the recent LEED and MEIS results, a consistent picture of the structure of this surface is provided. While the results of the most recent theoretical total-energy calculations are qualitatively consistent with this experimental consensus, significant quantitative differences remain

    The spatially-resolved star formation histories of CALIFA galaxies: Implications for galaxy formation

    Full text link
    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M109M_\star \sim 10^9 to 7×1011M7 \times 10^{11} M_\odot. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR\Sigma_{\rm SFR}), and other descriptors of the 2D-SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd), and five bins of stellar mass. Our main results are: a) Galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z>2z > 2). Subsequent star formation is driven by MM_\star and morphology, with less massive and later type spirals showing more prolonged periods of star formation. b) At any epoch in the past the SFR is proportional to MM_\star, with most massive galaxies having the highest absolute (but lowest specific) SFRs. c) While nowadays ΣSFR\Sigma_{\rm SFR} is similar for all spirals, and significantly lower in early type galaxies (ETG), in the past ΣSFR\Sigma_{\rm SFR} scales well with morphology. The central regions of today's ETGs are where ΣSFR\Sigma_{\rm SFR} reached the highest values (>103M> 10^3 \,M_\odot\,Gyr1^{-1}\,pc2^{-2}), similar to those measured in high redshift star forming galaxies. d) The evolution of ΣSFR\Sigma_{\rm SFR} in Sbc systems matches that of models for Milky-Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs.Comment: 21 pages, 11 figures, 1 table, accepted for publication in Astronomy & Astrophysics, abstract abridged for arXiv submissio
    corecore