3,000 research outputs found

    Syntomic cohomology and Beilinson's Tate conjecture for K₂

    No full text

    Flexible substrate for printed wiring

    Get PDF
    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives

    Flexible composite film for printed circuit board

    Get PDF
    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed

    Systematic characterization of thermodynamic and dynamical phase behavior in systems with short-ranged attraction

    Full text link
    In this paper we demonstrate the feasibility and utility of an augmented version of the Gibbs ensemble Monte Carlo method for computing the phase behavior of systems with strong, extremely short-ranged attractions. For generic potential shapes, this approach allows for the investigation of narrower attractive widths than those previously reported. Direct comparison to previous self-consistent Ornstein-Zernike approximation calculations are made. A preliminary investigation of out-of-equilibrium behavior is also performed. Our results suggest that the recent observations of stable cluster phases in systems without long-ranged repulsions are intimately related to gas-crystal and metastable gas-liquid phase separation.Comment: 10 pages, 8 figure

    Equilibrium properties of highly asymmetric star-polymer mixtures

    Full text link
    We employ effective interaction potentials to study the equilibrium structure and phase behavior of highly asymmetric mixtures of star polymers. We consider in particular the influence of the addition of a component with a small number of arms and a small size on a concentrated solution of large stars with a high functionality. By employing liquid integral equation theories we examine the evolution of the correlation functions of the big stars upon addition of the small ones, finding a loss of structure that can be attributed to a weakening of the repulsions between the large stars due to the presence of the small ones. We analyze this phenomenon be means of a generalized depletion mechanism which is supported by computer simulations. By applying thermodynamic perturbation theory we draw the phase diagram of the asymmetric mixture, finding that the addition of small stars melts the crystal formed by the big ones. A systematic comparison between the two- and effective one-component descriptions of the mixture that corroborates the reliability of the generalized depletion picture is also carried out.Comment: 26 pages, 9 figures, submitted to Phys. Rev.

    Structure and thermodynamics of colloid-polymer mixtures: a macromolecular approach

    Full text link
    The change of the structure of concentrated colloidal suspensions upon addition of non-adsorbing polymer is studied within a two-component, Ornstein-Zernicke based liquid state approach. The polymers' conformational degrees of freedom are considered and excluded volume is enforced at the segment level. The polymer correlation hole, depletion layer, and excess chemical potentials are described in agreement with polymer physics theory in contrast to models treating the macromolecules as effective spheres. Known depletion attraction effects are recovered for low particle density, while at higher densities novel many-body effects emerge which become dominant for large polymers.Comment: 7 pages, 4 figures; to be published in Europhys. Let

    Surface-mediated attraction between colloids

    Full text link
    We investigate the equilibrium properties of a colloidal solution in contact with a soft interface. As a result of symmetry breaking, surface effects are generally prevailing in confined colloidal systems. In this Letter, particular emphasis is given to surface fluctuations and their consequences on the local (re)organization of the suspension. It is shown that particles experience a significant effective interaction in the vicinity of the interface. This potential of mean force is always attractive, with range controlled by the surface correlation length. We suggest that, under some circumstances, surface-induced attraction may have a strong influence on the local particle distribution

    Entropic Interactions in Suspensions of Semi-Flexible Rods: Short-Range Effects of Flexibility

    Full text link
    We compute the entropic interactions between two colloidal spheres immersed in a dilute suspension of semi-flexible rods. Our model treats the semi-flexible rod as a bent rod at fixed angle, set by the rod contour and persistence lengths. The entropic forces arising from this additional rotational degree of freedom are captured quantitatively by the model, and account for observations at short range in a recent experiment. Global fits to the interaction potential data suggest the persistence length of fd-virus is about two to three times smaller than the commonly used value of 2.2μm2.2 \mu {m}.Comment: 4 pages, 5 figures, submitted to PRE rapid communication
    corecore