28 research outputs found

    Mitotic Exit Network Controls the Localization of Cdc14 to the Spindle Pole Body in Saccharomyces cerevisiae

    Get PDF
    AbstractBudding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood [1, 2]. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB

    Wnt/Dkk Negative Feedback Regulates Sensory Organ Size in Zebrafish

    Get PDF
    SummaryCorrect organ size must involve a balance between promotion and inhibition of cell proliferation. A mathematical model has been proposed in which an organ is assumed to produce its own growth activator as well as a growth inhibitor [1], but there is as yet no molecular evidence to support this model [2]. The mechanosensory organs of the fish lateral line system (neuromasts) are composed of a core of sensory hair cells surrounded by nonsensory support cells. Sensory cells are constantly replaced and are regenerated from surrounding nonsensory cells [3], while each organ retains the same size throughout life. Moreover, neuromasts also bud off new neuromasts, which stop growing when they reach the same size [4, 5]. Here, we show that the size of neuromasts is controlled by a balance between growth-promoting Wnt signaling activity in proliferation-competent cells and Wnt-inhibiting Dkk activity produced by differentiated sensory cells. This negative feedback loop from Dkk (secreted by differentiated cells) on Wnt-dependent cell proliferation (in surrounding cells) also acts during regeneration to achieve size constancy. This study establishes Wnt/Dkk as a novel mechanism to determine the final size of an organ

    Sex Reversal in Zebrafish fancl Mutants is Caused by Tp53-Mediated Germ Cell Apoptosis

    Get PDF
    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination

    Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration

    Get PDF
    Background: The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 (C9orf72) locus. The pathological hallmarks observed in C9orf72 repeat expansion carriers are the formation of RNA foci and deposition of dipeptide repeat (DPR) proteins derived from repeat associated non-ATG (RAN) translation. Currently, it is unclear whether formation of RNA foci, DPR translation products, or partial loss of C9orf72 predominantly drive neurotoxicity in vivo. By using a transgenic approach in zebrafish we address if the most frequently found DPR in human ALS/FTLD brain, the poly-Gly-Ala (poly-GA) protein, is toxic in vivo. Method: We generated several transgenic UAS responder lines that express either 80 repeats of GGGGCC alone, or together with a translation initiation ATG codon forcing the translation of GA80-GFP protein upon crossing to a Gal4 driver. The GGGGCC repeat and GA80 were fused to green fluorescent protein (GFP) lacking a start codon to monitor protein translation by GFP fluorescence. Results: Zebrafish transgenic for the GGGGCC repeat lacking an ATG codon showed very mild toxicity in the absence of poly-GA. However, strong toxicity was induced upon ATG initiated expression of poly-GA, which was rescued by injection of an antisense morpholino interfering with start codon dependent poly-GA translation. This morpholino only interferes with GA80-GFP translation without affecting repeat transcription, indicating that the toxicity is derived from GA80-GFP. Conclusion: These novel transgenic C9orf72 associated repeat zebrafish models demonstrate poly-GA toxicity in zebrafish. Reduction of poly-GA protein rescues toxicity validating this therapeutic approach to treat C9orf72 repeat expansion carriers. These novel animal models provide a valuable tool for drug discovery to reduce DPR associated toxicity in ALS/FTLD patients with C9orf72 repeat expansions

    zTrap: zebrafish gene trap and enhancer trap database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have developed genetic methods in zebrafish by using the <it>Tol2 </it>transposable element; namely, transgenesis, gene trapping, enhancer trapping and the Gal4FF-UAS system. Gene trap constructs contain a splice acceptor and the GFP or Gal4FF (a modified version of the yeast Gal4 transcription activator) gene, and enhancer trap constructs contain the zebrafish <it>hsp70l </it>promoter and the GFP or Gal4FF gene. By performing genetic screens using these constructs, we have generated transgenic zebrafish that express GFP and Gal4FF in specific cells, tissues and organs. Gal4FF expression is visualized by creating double transgenic fish carrying a Gal4FF transgene and the GFP reporter gene placed downstream of the Gal4-recognition sequence (UAS). Further, the Gal4FF-expressing cells can be manipulated by mating with UAS effector fish. For instance, when fish expressing Gal4FF in specific neurons are crossed with the UAS:TeTxLC fish carrying the tetanus neurotoxin gene downstream of UAS, the neuronal activities are inhibited in the double transgenic fish. Thus, these transgenic fish are useful to study developmental biology and neurobiology.</p> <p>Description</p> <p>To increase the usefulness of the transgenic fish resource, we developed a web-based database named <it>z</it>Trap <url>http://kawakami.lab.nig.ac.jp/ztrap/</url>. The <it>z</it>Trap database contains images of GFP and Gal4FF expression patterns, and genomic DNA sequences surrounding the integration sites of the gene trap and enhancer trap constructs. The integration sites are mapped onto the <it>Ensembl </it>zebrafish genome by in-house Blat analysis and can be viewed on the <it>z</it>Trap and <it>Ensembl </it>genome browsers. Furthermore, <it>z</it>Trap is equipped with the functionality to search these data for expression patterns and genomic loci of interest. <it>z</it>Trap contains the information about transgenic fish including UAS reporter and effector fish.</p> <p>Conclusion</p> <p><it>z</it>Trap is a useful resource to find gene trap and enhancer trap fish lines that express GFP and Gal4FF in desired patterns, and to find insertions of the gene trap and enhancer trap constructs that are located within or near genes of interest. These transgenic fish can be utilized to observe specific cell types during embryogenesis, to manipulate their functions, and to discover novel genes and <it>cis</it>-regulatory elements. Therefore, <it>z</it>Trap should facilitate studies on genomics, developmental biology and neurobiology utilizing the transgenic zebrafish resource.</p

    Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    Get PDF
    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination

    Protocadherin-Mediated Cell Repulsion Controls the Central Topography and Efferent Projections of the Abducens Nucleus

    No full text
    Summary: Cranial motor nuclei in the brainstem innervate diverse types of head and neck muscles. Failure in establishing these neuromuscular connections causes congenital cranial dysinnervation disorders (CCDDs) characterized by abnormal craniofacial movements. However, mechanisms that link cranial motor nuclei to target muscles are poorly understood at the molecular level. Here, we report that protocadherin-mediated repulsion mediates neuromuscular connection in the ocular motor system in zebrafish. We identify pools of abducens motor neurons that are topographically arranged according to soma size and convergently innervate a single muscle. Disruptions of Duane retraction syndrome-associated transcription factors reveal that these neurons require Mafba/MAFB, but not Sall4/SALL4, for differentiation. Furthermore, genetic perturbations of Pcdh17/protocadherin-17 result in defective axon growth and soma clumping, thereby abolishing neuromuscular connectivity. Our results suggest that protocadherin-mediated repulsion forms the central topography and efferent projection pattern of the abducens nucleus following Mafba-dependent specification and imply potential involvement of protocadherins in CCDD etiology. : Cranial neuromuscular systems have been relatively unexplored, because of their restricted tissue accessibility. Using zebrafish, Asakawa and Kawakami develop a model system to analyze cranial neuromuscular connectivity and find that protocadherin-mediated repulsion plays crucial roles for connecting the abducens nucleus to the lateral rectus muscle. Keywords: mnr2b, pcdh17, mafb, sall4, zebrafish, DRS, strabismus, lateral rectus, rhombomere, motor neuro

    Inactivation of the Pre-mRNA Cleavage and Polyadenylation Factor Pfs2 in Fission Yeast Causes Lethal Cell Cycle Defects

    No full text
    Faithful chromosome segregation is fundamentally important for the maintenance of genome integrity and ploidy. By isolating conditional mutants defective in chromosome segregation in the fission yeast Schizosaccharomyces pombe, we identified a role for the essential gene pfs2 in chromosome dynamics. In the absence of functional Pfs2, chromosomal attachment to the mitotic spindle was defective, with consequent chromosome missegregation. Under these circumstances, multiple intracellular foci of spindle checkpoint proteins Bub1 and Mad2 were seen, and deletion of bub1 exacerbated the mitotic defects and the loss of cell viability that resulted from the loss of pfs2 function. Progression from G(1) into S phase following release from nitrogen starvation also required pfs2(+) function. The product of the orthologous Saccharomyces cerevisiae gene PFS2 is a component of a multiprotein complex required for 3′-end cleavage and polyadenylation of pre-mRNAs and, in keeping with the conservation of this essential function, an S. pombe pfs2 mutant was defective in mRNA 3′-end processing. Mutations in pfs2 were suppressed by overexpression of the putative mRNA 3′-end cleavage factor Cft1. These data suggest unexpected links between mRNA 3′-end processing and chromosome replication and segregation
    corecore