1,814 research outputs found

    Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm

    Full text link
    We report on ellipsometric measurements of the refractive indices of LAB-PPO, Nd-doped LAB-PPO and EJ-301 scintillators to the nearest +/-0.005, in the wavelength range 210-1000 nm.Comment: 7 pages, 4 figure

    Implantable Devices for the Treatment of Breast Cancer

    Get PDF
    Breast cancer is one of the leading causes of death in the female population worldwide. Standard treatments such as chemotherapy show noticeable results. However, along with killing cancer cells, it causes systemic toxicity and apoptosis of the nearby healthy cells, therefore patients must endure side effects during the treatment process. Implantable drug delivery devices that enhance therapeutic efficacy by allowing localized therapy with programmed or controlled drug release can overcome the shortcomings of conventional treatments. An implantable device can be composed of biopolymer materials, nanocomposite materials, or a combination of both. This review summarizes the recent research and current state-of-the art in these types of implantable devices and gives perspective for future directions

    Accurate first principles detailed balance determination of Auger recombination and impact ionization rates in semiconductors

    Full text link
    The technologically important problem of predicting Auger recombination lifetimes in semiconductors is addressed by means of a fully first--principles formalism. The calculations employ highly precise energy bands and wave functions provided by the full--potential linearized augmented plane wave (FLAPW) code based on the screened exchange local density approximation. The minority carrier Auger lifetime is determined by two closely related approaches: \emph{i}) a direct evaluation of the Auger rates within Fermi's Golden Rule, and \emph{ii}) an indirect evaluation, based on a detailed balance formulation combining Auger recombination and its inverse process, impact ionization, in a unified framework. Calculated carrier lifetimes determined with the direct and indirect methods show excellent consistency \emph{i}) between them for nn-doped GaAs and \emph{ii}%) with measured values for GaAs and InGaAs. This demonstrates the validity and accuracy of the computational formalism for the Auger lifetime and indicates a new sensitive tool for possible use in materials performance optimization.Comment: Phys. Rev. Lett. accepte

    Electronic structures of doped anatase TiO2\rm TiO_{2}: Ti1xMxO2\rm Ti_{1-x}M_{x}O_{2} (M=Co, Mn, Fe, Ni)

    Full text link
    We have investigated electronic structures of a room temperature diluted magnetic semiconductor : Co-doped anatase TiO2\rm TiO_{2}. We have obtained the half-metallic ground state in the local-spin-density approximation(LSDA) but the insulating ground state in the LSDA+UU+SO incorporating the spin-orbit interaction. In the stoichiometric case, the low spin state of Co is realized with the substantially large orbital moment. However, in the presence of oxygen vacancies near Co, the spin state of Co becomes intermediate. The ferromagnetisms in the metallic and insulating phases are accounted for by the double-exchange-like and the superexchange mechanism, respectively. Further, the magnetic ground states are obtained for Mn and Fe doped TiO2\rm TiO_{2}, while the paramagnetic ground state for Ni-doped TiO2\rm TiO_{2}.Comment: 5 pages, 4 figure

    Ground-state electric quadrupole moment of 31Al

    Full text link
    Ground-state electric quadrupole moment of 31Al (I =5/2+, T_1/2 = 644(25) ms) has been measured by means of the beta-NMR spectroscopy using a spin-polarized 31Al beam produced in the projectile fragmentation reaction. The obtained Q moment, |Q_exp(31Al)| = 112(32)emb, are in agreement with conventional shell model calculations within the sd valence space. Previous result on the magnetic moment also supports the validity of the sd model in this isotope, and thus it is concluded that 31Al is located outside of the island of inversion.Comment: 5 page

    Optical band edge shift of anatase cobalt-doped titanium dioxide

    Get PDF
    We report on the optical properties of magnetic cobalt-doped anatase phase titanium dioxide Ti_{1-x}Co_{x}O_{2-d} films for low doping concentrations, 0 <= x <= 0.02, in the spectral range 0.2 to 5 eV. For well oxygenated films (d << 1) the optical conductivity is characterized by an absence of optical absorption below an onset of interband transitions at 3.6 eV and a blue shift of the optical band edge with increasing Co concentration. The absence of below band gap absorption is inconsistent with theoretical models which contain midgap magnetic impurity bands and suggests that strong on-site Coulomb interactions shift the O-band to Co-level optical transitions to energies above the gap.Comment: 5 pages, 4 figures, 1 table; Version 2 - major content revisio

    Electronic Structure and Optical Properties of the Co-doped Anatase TiO2_{2} Studied from First Principles

    Full text link
    The Co-doped anatase TiO2_{2}, a recently discovered room-temperature ferromagnetic insulator, has been studied by the first-principles calculations in the pseudo-potential plane-wave formalism within the local-spin-density approximation (LSDA), supplemented by the full-potential linear augmented plane wave (FP-LAPW) method. Emphasis is placed on the dependence of its electronic structures and linear optical properties on the Co-doping concentration and oxygen vacancy in the system in order to pursue the origin of its ferromagnetism. In the case of substitutional doping of Co for Ti, our calculated results are well consistent with the experimental data, showing that Co is in its low spin state. Also, it is shown that the oxygen vacancy enhances the ferromagnetism and has larger effect on both the electronic structure and optical properties than the Co-doping concentration only.Comment: 12 pages, 4 figure

    Closure of the Bering Strait caused Mid-Pleistocene Transition cooling

    Get PDF
    This is the final version. Available from Springer Nature via the DOI in this record. Data availability: All data generated during this study supporting its findings are available within the paper and the supplementary information.The Mid-Pleistocene Transition (MPT) is characterised by cooling and lengthening glacial cycles from 600–1200 ka, thought to be driven by reductions in glacial CO2 in particular from ~900 ka onwards. Reduced high latitude upwelling, a process that retains CO2 within the deep ocean over glacials, could have aided drawdown but has so far not been constrained in either hemisphere over the MPT. Here, we find that reduced nutrient upwelling in the Bering Sea, and North Pacific Intermediate Water expansion, coincided with the MPT and became more persistent at ~900 ka. We propose reduced upwelling was controlled by expanding sea ice and North Pacific Intermediate Water formation, which may have been enhanced by closure of the Bering Strait. The regional extent of North Pacific Intermediate Water across the subarctic northwest Pacific would have contributed to lower atmospheric CO2 and global cooling during the MPT.Natural Environment Research Council (NERC)National Research Foundation of Kore
    corecore