9 research outputs found

    Sub-Micron Particle Based Structures as Reconfigurable Photonic Devices Controllable by External Photonic and Magnetic Fields

    Get PDF
    In this paper we present the configurations of two nanometer scale structures—one of them optically controllable and the second one magnetically controllable. The first involves an array of nanoparticles that are made up of two layers (i.e., Au on top of a Si layer). The device may exhibits a wide range of plasmonic resonance according to external photonic radiation. The second type of device involves the usage of sub micron superparamagnetic particles located on a suitable structuring grid, that according to the angle of the external magnetic field allows control of the length of the structuring grid and therefore control the diffraction order of each wavelength

    Self Assembly of Nano Metric Metallic Particles for Realization of Photonic and Electronic Nano Transistors

    Get PDF
    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles

    Design and Fabrication of 1 Ă— 2 Nanophotonic Switch

    Get PDF
    We present the design and the fabrication of a novel 1Ă—2 nanophotonic switch. The switch is a photonic T-junction in which a gold nano particle is being positioned in the junction using the tip of an atomic force microscope (AFM). The novelty of this 1Ă—2 switch is related to its ability to control the direction of wave that propagates along a photonic structure. The selectivity of the direction is determined by a gold nanoparticle having dimension of a few tens of nanometer. This particle can be shifted. The shift of the gold nano particle can be achieved by applying voltage or by illuminating it with a light source. The shifts of the particle, inside the air gap, direct the input beam ones to the left output of the junction and once to its right output. Three types of simulations have been done in order to realize the photonic T-junction, and they are as follows: photonic crystal structures, waveguide made out of PMMA, and a silicon waveguide

    Integrated Photonic Micro Logic GateOptical Supercomputing

    No full text
    In this paper we present an approach for realizing an integrated all-optical logic gate. The basic principle is based upon stimulated emission process generated in an active gain medium while special interferometric photonic wave-guiding structure allows the realization of an integrated micro scale device. The operation rate of the proposed approach can theoretically reach tens of Tera-Hertz

    All-optical integrated micro logic gate

    No full text
    In this paper we present a novel approach for realizing an integrated all-optical logic gate. The basic principle is based upon stimulated emission process generated in an active gain medium while special interferometric photonic wave-guiding structure allows the realization of an integrated micro scale device. The operation rate of the proposed device structure can theoretically reach tens of Tera-Hertz
    corecore