14 research outputs found

    Sorafenib, Rapamycin, and Venetoclax Attenuate Doxorubicin-Induced Senescence and Promote Apoptosis in HCT116 Cells

    Get PDF
    Emerging evidence has shown that the therapy-induced senescent growth arrest in cancer cells is of durable nature whereby a subset of cells can reinstate proliferative capacity. Promising new drugs named senolytics selectively target senescent cells and commit them into apoptosis. Accordingly, senolytics have been proposed as adjuvant cancer treatment to cull senescent tumor cells, and thus, screening for agents that exhibit senolytic properties is highly warranted. Our study aimed to investigate three agents, sorafenib, rapamycin, and venetoclax for their senolytic potential in doxorubicin-induced senescence in HCT116 cells. HCT116 cells were treated with one of the three agents, sorafenib (5 ĀµM), rapamycin (100 nM), or venetoclax (10 ĀµM), in the absence or presence of doxorubicin (1 ĀµM). Senescence was evaluated using microscopy-based and flow cytometry-based Senescence-associated-Ī²-galactosidase staining (SA-Ī²-gal), while apoptosis was assessed using annexin V-FITC/PI, and Muse caspase-3/-7 activity assays. We screened for potential genes through which the three drugs exerted senolytic-like action using the Human Cancer Pathway Finder PCR array. The three agents reduced doxorubicin-induced senescent cell subpopulations and significantly enhanced the apoptotic effect of doxorubicin compared with those treated only with doxorubicin. The senescence genes IGFBP5 and BMI1 and the apoptosis genes CASP7 and CASP9 emerged as candidate genes through which the three drugs exhibited senolytic-like properties. These results suggest that the attenuation of doxorubicin-induced senescence might have shifted HCT116 cells to apoptosis by exposure to the tested pharmacological agents. Our work argues for the use of senolytics to reduce senescence-mediated resistance in tumor cells and to enhance chemotherapy efficacy

    In vivo and in vitro studies evaluating the chemopreventive effect of metformin on the aryl hydrocarbon receptor-mediated breast carcinogenesis

    Get PDF
    Metformin (MET) is a clinically used anti-hyperglycemic agent that shows activities against chemically-induced animal models of cancer. A study from our laboratory showed that MET protectes against 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis in vitro human non-cancerous epithelial breast cells (MCF10A) via activation of the aryl hydrocarbon receptor (AhR). However, it is unclear whether MET can prevent the initiation of breast carcinogenesis in an in vivo rat model of AhR-induced breast carcinogenesis. Therefore, the main aims of this study are to examine the effect of MET on protecting against rat breast carcinogenesis induced by DMBA and to explore whether this effect is medicated through the AhR pathway. In this study, treatment of female rats with DMBA initiated breast carcinogenesis though inhibiting apoptosis and tumor suppressor genes while inducing oxidative DNA damage and cell cycle proliferative markers. This effect was associated with activation of AhR and its downstream target genes; cytochrome P4501A1 (CYP1A1) and CYP1B1. Importantly, MET treatment protected against DMBA-induced breast carcinogenesis by restoring DMBA effects on apoptosis, tumor suppressor genes, DNA damage, and cell proliferation. Mechanistically using in vitro human breast cancer MCF-7 cells, MET inhibited breast cancer stem cells spheroids formation and development by DMBA, which was accompanied by a proportional inhibition in CYP1A1 gene expression. In conclusion, the study reports evidence that MET is an effective chemopreventive therapy for breast cancer by inhibiting the activation of CYP1A1/CYP1B1 pathway in vivo rat model

    Nucleotide excision repair isĀ a predictor of early relapse in pediatric acute lymphoblastic leukemia

    No full text
    Abstract Background Nucleotide Excision Repair (NER) is a major pathway of mammalian DNA repair that is associated with drug resistance and has not been well characterized in acute lymphoblastic leukemia (ALL). The objective of this study was to explore the role of NER in relapsed ALL patients. We hypothesized that increased expression of NER genes was associated with drug resistance and relapse in ALL. Methods We performed secondary data analysis on two sets of pediatric ALL patients that all ultimately relapsed, and who had matched diagnosis-relapse gene expression microarray data (GSE28460 and GSE18497). GSE28460 included 49 precursor-B-ALL patients, and GSE18497 included 27 precursor-B-ALL and 14Ā T-ALL patients. Microarray data were processed using theĀ Plier 16 algorithm and the 20 canonical NER genes were extracted. Comparisons were made between time of diagnosis and relapse, and between early and late relapsing subgroups. The Chi-square test was used to evaluate whether NER gene expression was altered at the level of the entire pathway and individual gene expression was compared using t-tests. Results We found that gene expression of the NER pathway was significantly increased upon relapse in patients that took 3Ā years or greater to relapse (late relapsers, Pā€‰=ā€‰.007), whereas no such change was evident in patients that relapsed in less than 3Ā years (early relapsers, Pā€‰=Ā .180). Moreover, at diagnosis, the NER gene expression of the early relapsing subpopulation was alreadyĀ significantly elevated over that of the late relapsing group (Pā€‰<ā€‰.001). This pattern was validated by an ā€˜NER scoreā€™ established by averaging the relative expression of the 20 canonical NER genes. The NER score at diagnosis was found to be significantly associated with disease-free survival in precursor-B-ALL (PĀ <ā€‰.001). Conclusion Patients are over two times more likely to undergo early relapse if they have a high NER score at diagnosis, hazard ratio 2.008, 95% CI (1.256ā€“3.211). The NER score may provide aĀ underlying mechanism for ā€œtime to remissionā€, a known prognostic factor in ALL, and a rationale for differential treatment

    Whole-exome sequencing identifies cancer-associated variants of the endo-lysosomal ion transport channels in the Saudi population

    No full text
    Background: Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods: Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results: The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) ofĀ ā‰„Ā 1Ā %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion: Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes

    Adverse Responses following Exposure to Subtoxic Concentrations of Zinc Oxide and Nickle Oxide Nanoparticles in the Raw 264.7 Cells

    No full text
    The incorporation of engineered nanomaterials (ENMs) in biomedical and consumer products has been growing, leading to increased human exposure. Previous research was largely focused on studying direct ENM toxicity in unrealistic high-exposure settings. This could result in overlooking potential adverse responses at low and subtoxic exposure levels. This study investigated adverse cellular outcomes to subtoxic concentrations of zinc oxide (ZnONPs) or nickel oxide (NiONPs) nanoparticles in the Raw 264.7 cells, a macrophage-like cell model. Exposure to both nanoparticles resulted in a concentration-dependent reduction of cell viability. A subtoxic concentration of 6.25 Āµg/mL (i.e., no observed adverse effect level) was used in subsequent experiments. Exposure to both nanoparticles at subtoxic levels induced reactive oxygen species generation. Cellular internalization data demonstrated significant uptake of NiONPs, while there was minimal uptake of ZnONPs, suggesting a membrane-driven interaction. Although subtoxic exposure to both nanoparticles was not associated with cell activation (based on the expression of MHC-II and CD86 surface markers), it resulted in the modulation of the lipopolysaccharide-induced inflammatory response (TNFĪ± and IL6), and cells exposed to ZnONPs had reduced cell phagocytic capacity. Furthermore, subtoxic exposure to the nanoparticles distinctly altered the levels of several cellular metabolites involved in cell bioenergetics. These findings suggest that exposure to ENMs at subtoxic levels may not be devoid of adverse health outcomes. This emphasizes the importance of establishing sensitive endpoints of exposure and toxicity beyond conventional toxicological testing

    Synthesis, Characterization, and Anticancer Activity of Phosphanegold(i) Complexes of 3-Thiosemicarbano-butan-2-one Oxime

    No full text
    Four novel phosphanegold(I) complexes of the type [Au(PR3)(DMT)].PF6 (1ā€“4) were synthesized from 3-Thiosemicarbano-butan-2-one oxime ligand (TBO) and precursors [Au(PR3)Cl], (where R = methyl (1), ethyl (2), tert-butyl (3), and phenyl (4)). The resulting complexes were characterized by elemental analyses and melting point as well as various spectroscopic techniques, including FTIR and (1H, 13C, and 31P) NMR spectroscopy. The spectroscopic data confirmed the coordination of TBO ligands to phosphanegold(I) moiety. The solution chemistry of complexes 1ā€“4 indicated their stability in both dimethyl sulfoxide (DMSO) and a mixture of EtOH:H2O (1:1). In vitro cytotoxicity of the complexes was evaluated relative to cisplatin using an MTT assay against three different cancer cell lines: HCT116 (human colon cancer), MDA-MB-231 (human breast cancer), and B16 (murine skin cancer). Complexes 2, 3, and 4 exhibited significant cytotoxic effects against all tested cancer cell lines and showed significantly higher activity than cisplatin. To elucidate the mechanism underlying the cytotoxic effects of the phosphanegold(I) TBO complexes, various assays were employed, including mitochondrial membrane potential, ROS production, and gene expression analyses. The data obtained suggest that complex 2 exerts potent anticancer activity against breast cancer cells (MDA-MB-231) through the induction of oxidative stress, mitochondrial dysfunction, and apoptosis. Gene expression analyses showed an increase in the activity of the proapoptotic gene caspase-3 and a reduction in the activity of the antiapoptotic gene BCL-xL, which supported the findings that apoptosis had occurred

    Metformin attenuates V-domain Ig suppressor of T-cell activation through the aryl hydrocarbon receptor pathway in Melanoma: In Vivo and In Vitro Studies

    No full text
    Melanoma is an aggressive skin cancer with a high rate of metastasis to other organs. Recent studies specified the overexpression of V-domain Ig suppressor of T-cell activation (VISTA) and Aryl Hydrocarbon Receptor (AHR) in melanoma. Metformin shows anti-tumor activities in several cancer types. However, the mechanism is unclear. This study aims to investigate the inhibitory effect of metformin on VISTA via AHR in melanoma cells (CHL-1, B16) and animal models. VISTA and AHR levels were assessed by qPCR, Western blot, immunofluorescence microscope, flow cytometry, and immunohistochemistry. Here, metformin significantly decreased VISTA and AHR levels in vitro and in vivo. Furthermore, metformin inhibited all AHR-regulated genes. VISTA levels were dramatically inhibited by AHR modulations using shRNA and Ī±NF, confirming the central role of AHR in VISTA. Finally, melanoma cells were xenografted in C57BL/6 and nude mice. Metformin significantly reduced the tumor volume and growth rate. Likewise, VISTA and AHR-regulated protein levels were suppressed in both models. These findings demonstrate for the first time that VISTA is suppressed by metformin and identified a new regulatory mechanism through AHR. The data suggest that metformin could be a new potential therapeutic strategy to treat melanoma patients combined with targeted immune checkpoint inhibitors.Funded by the initiative of DSR Graduate Students Research Support (GSR) - Deanship of scientific research in King Saud Universit

    Synthesis, Characterization, and Toxicity Assessment of Zinc Oxide-Doped Manganese Oxide Nanoparticles in a Macrophage Model

    No full text
    The doping of engineered nanomaterials (ENMs) is a key tool for manipulating the properties of ENMs (e.g., electromagnetic, optical, etc.) for different therapeutic applications. However, adverse health outcomes and the cellular biointeraction of doped ENMs, compared to undoped counterparts, are not fully understood. Previously, we have shown that doping manganese oxide nanoparticles with ZnO (ZnO-MnO2 NPs) improved their catalytic properties. In this study, we assessed the toxicity of ZnO-MnO2 NPs in Raw 264.7 cells. NPs were prepared via an eco-friendly, co-precipitation method and characterized by several techniques, including transmission and scanning electron microscopy, X-ray diffraction, and Fourier transform infrared. The physicochemical properties of ZnO-MnO2 NPs, including size, morphology, and crystalline structure, were almost identical to MnO2 NPs. However, ZnO-MnO2 NPs showed slightly larger particle aggregates and negative charge in cell culture media. Exposure to ZnO-MnO2 NPs resulted in lower toxicity based on the cell viability and functional assay (phagocytosis) data. Exposure to both NPs resulted in the activation of the cell inflammatory response and the generation of reactive oxygen species (ROS). Despite this, exposure to ZnO-MnO2 NPs was associated with a lower toxicity profile, and it resulted in a higher ROS burst and the activation of the cell antioxidant system, hence indicating that MnO2 NP-induced toxicity is potentially mediated via other ROS-independent pathways. Furthermore, the cellular internalization of ZnO-MnO2 NPs was lower compared to MnO2 NPs, and this could explain the lower extent of toxicity of ZnO-MnO2 NPs and suggests Zn-driven ROS generation. Together, the findings of this report suggest that ZnO (1%) doping impacts cellular biointeraction and the consequent toxicological outcomes of MnO2 NPs in Raw 264.7 cells

    Synthesis, characterization, and miRNA-mediated PI3K suppressing activity of novel cisplatin-derived complexes of selenones

    No full text
    New therapeutic options are crucially for most cancers, particularly those with poor clinical outcomes. Five new derivatives of cisplatin-containing selenone ligands with the general formula, cis-[Pt(NH3)2(Selenone)2](NO3)2 (1ā€“5) were synthesized and characterized using elemental analysis, Infrared, and nuclear magnetic resonance (1H, 13C &amp; 77Se) spectroscopy. Spectroscopic and computational data supported the coordination of selenones to platinum(II). The structures of the complexes were predicted using density functional theory calculations. Molecular docking studies were carried out using the AutoDock Tools docking program. The in vitro cytotoxicity of these complexes and cisplatin against three human cancer cell lines, HeLa, A549, and HCT116 was investigated using the MTT assay. The best candidate complex, complex 3, was subjected to mechanistic assessments, including miRNA profiling, PI3K deactivation, and induction of apoptosis. Docking studies showed that all the newly synthesized platinum(II) complexes interacted with the minor DNA groove. The synthesized complexes showed promising cytotoxic effects against the tested cell lines. Complex 3 modulated the miRNA expression signature in A549 cells. Pathway enrichment analyses of differentially expressed miRNA gene targets identified the PI3K/AKT signaling pathway as a promising target. Complex 3 inhibited PI3K activity and induced apoptosis. Collectively, our study identified promising new platinum(II) derivatives such as complex 3, paving the way for future in vitro and in vivo validations and safety studies
    corecore