49 research outputs found

    Food Additive Sodium Benzoate (NaB) Activates NFκB and Induces Apoptosis in HCT116 Cells

    No full text
    NaB, the metabolite of cinnamon and sodium salt of benzoic acid is a commonly used food and beverage preservative. Various studies have investigated NaB for its effects on different cellular models. However, the effects of NaB on cancer cell viability signaling is substantially unknown. In this study, the effects of NaB on viability parameters and NFκB, one of the most important regulators in apoptosis, were examined in HCT116 colon cancer cells. Cell culture, light microscopy, spectrophotometry, flow cytometry, and western blot were used as methods to determine cell viability, caspase-3 activity, NFκB, Bcl-xl, Bim, and PARP proteins, respectively. NaB (6.25 mM–50 mM) treatment inhibited cell viability by inducing apoptosis, which was evident with increased Annexin V-PE staining and caspase-3 activity. NFκB activation accompanied the induction of apoptosis in NaB treated cells. Inhibition of NFκB with BAY 11-7082 did not show a pronounced effect on cell viability but induced a more apoptotic profile, which was confirmed by increased PARP fragmentation and caspase-3 activity. This effect was mostly evident at 50 mM concentration of NaB. Bcl-xl levels were not affected by NaB or BAY 11-7082/NaB treatment; whereas, total Bim increased with NaB treatment. Inhibition of NFκB activity further increased Bim levels. Overall, these results suggest that NaB induces apoptosis and activates NFκB in HCT116 colon cancer cells. Activation of NFκB emerges as target in an attempt to protect cells against apoptosis

    Spastin Promotes the Migration and Invasion Capability of T98G Glioblastoma Cells by Interacting with Pin1 through Its Microtubule-Binding Domain

    No full text
    Microtubule-severing protein Spastin has been shown to co-localize with actin in migratory glioblastoma cells and is linked to glioblastomas’ migration and invasion capacity. However, the effectiveness of Spastin in glioblastoma migration and the molecular mechanism underpinning the orientation of Spastin towards actin filaments remain unknown. Here, we demonstrated that Spastin plays an active role in glioblastoma migration by showing a reduced migratory potential of T98G glioblastoma cells using real-time cell analysis (RTCA) in Spastin-depleted cells. Pull-down assays revealed that a cis–trans isomerase Pin1 interacts with Spastin through binding to the phosphorylated Pin1 recognition motifs in the microtubule-binding domain (MBD), and immunocytochemistry analysis showed that interaction with Pin1 directs Spastin to actin filaments in extended cell regions. Consequently, by utilizing RTCA, we proved that the migration and invasion capacity of T98G glioblastoma cells significantly increased with the overexpression of Spastin, of which the Pin1 recognition motifs in MBD are constitutively phosphorylated, while the overexpression of phospho-mutant form did not have a significant effect on migration and invasion of T98G glioblastoma cells. These findings demonstrate that Pin1 is a novel interaction partner of Spastin, and their interaction drives Spastin to actin filaments, allowing Spastin to contribute to the glioblastomas’ migration and invasion abilities

    Neuroprotective strategies against calpain-mediated neurodegeneration

    No full text
    WOS: 000348987000001PubMed ID: 25709452Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-D-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases.Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA-GEBIP); Scientific and Technological Research Council of Turkey (TUBITAK)-The Basic Sciences Research Group (TBAG) [108T811]The "Speedy/RINGO over-expression to prevent calpain-mediated apoptosis" study was funded by grants to Arzu Karabay from The Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA-GEBIP) and The Scientific and Technological Research Council of Turkey (TUBITAK)-The Basic Sciences Research Group (TBAG) (grant number 108T811)

    Elk1 affects katanin and spastin proteins via differential transcriptional and post-transcriptional regulations.

    No full text
    Microtubule severing, which is highly critical for the survival of both mitotic and post-mitotic cells, has to be precisely adjusted by regulating the expression levels of severing proteins, katanin and spastin. Even though severing mechanism is relatively well-studied, there are limited studies for the transcriptional regulation of microtubule severing proteins. In this study, we identified the main regulatory region of KATNA1 gene encoding katanin-p60 as 5' UTR, which has a key role for its expression, and showed Elk1 binding to KATNA1. Furthermore, we identified that Elk1 decreased katanin-p60 and spastin protein expressions, while mRNA levels were increased upon Elk1 overexpression. In addition, SUMOylation is a known post-translational modification regulating Elk1 activity. A previous study suggested that K230, K249, K254 amino acids in the R domain are the main SUMOylation sites; however, we identified that these amino acids are neither essential nor substantial for Elk1 SUMOylation. Also, we determined that KATNA1 methylation results in the reduction of Elk1 binding whereas SPG4 methylation does not. Together, our findings emphasizing the impacts of both transcriptional and post-transcriptional regulations of katanin-p60 and spastin suggest that Elk1 has a key role for differential expression patterns of microtubule severing proteins, thereby regulating cellular functions through alterations of microtubule organization

    Complete aortic prosthetic valve dehiscence after modified Bentall-De Bono procedure

    No full text
    A 56-year-old male patient was admitted to our clinic due to persistent fever despite the use of antibiotics for 2 weeks, chest pain, and presyncope. His medical history revealed that the patient underwent modified Bentall-De Bono procedure 2 months ago due to ascending aortic aneurysm and severe aortic insufficiency. Transthoracic apical 5 chamber view showed that mobile vegetation prolapsed into the left ventricular outflow tract during ventricular diastole and that mechanical prosthetic valve was superior to the aortic annulus. Transesophageal echocardiography revealed normal aortic mechanical prosthetic valve function; however, the valve was positioned more superior to the annular plane and a dense vegetation was observed. Moreover, a complete dehiscence of the prosthetic valve was attached to aortic annulus with a single stitch in an area between noncoronary sinus and left coronary sinus. Dense thrombus formation was observed in the perivalvular region. Many cases with prosthetic valve endocarditis and partial dehiscence as its complication have been reported in the literature. However, to the best of our knowledge, there is no reported case of complete dehiscence secondary to infective endocarditis following complete ascending aortic graft and prosthetic aortic valve replacement (modified Bentall-De Bono procedure)

    p53 regulates katanin-p60 promoter in HCT 116 cells

    No full text
    Tumor suppressor protein p53, which functions in the cell cycle, apoptosis and neuronal differentiation via transcriptional regulations of target genes or interactions with several proteins, has been associated with neurite outgrowth through microtubule re-organization. We previously demonstrated in neurons that upon p53 induction, the level of microtubule severing protein Katanin-p60 increases, indicating that p53 might be a transcriptional regulator of the KATNA1 gene encoding Katanin-p60. In this context, we firstly elucidated the activity of KATNA1 regulatory regions and endogenous KATNA1 mRNA levels in the presence or absence of p53 using HCT 116 WT and HCT 116 p53 (−/−) cells. Next, we demonstrated the binding of p53 to the KATNA1 promoter and then investigated the role of p53 on KATNA1 gene expression by ascertaining KATNA1 mRNA and Katanin-p60 protein levels upon p53 overexpression and activation in both cells. Moreover, we showed changes in microtubule network upon increased Katanin-p60 level due to p53 overexpression. Also, the changes in KATNA1 mRNA and Katanin-p60 protein levels upon p53 knockdown were investigated. Our results indicate that p53 is an activator of KATNA1 gene expression and we show that both p53 and Katanin-p60 expression have strict regulations and are maintained at balanced levels as they are vital proteins to orchestrate either survival and apoptosis or differentiation
    corecore