207 research outputs found

    Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    Full text link
    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 MW/cm3{MW/cm}^3 with 1% conversion efficiency of beam energy losses to electromagnetic emission

    Second harmonic electromagnetic emission of a turbulent magnetized plasma driven by a powerful electron beam

    Full text link
    The power of second harmonic electromagnetic emission is calculated for the case when strong plasma turbulence is excited by a powerful electron beam in a magnetized plasma. It is shown that the simple analytical model of strong plasma turbulence with the assumption of a constant pump power is able to explain experimentally observed bursts of electromagnetic radiation as a consequence of separate collapse events. It is also found that the electromagnetic emission power calculated for three-wave interaction processes occurring in the long-wavelength part of turbulent spectrum is in order-of-magnitude agreement with experimental results

    SepicNet: Sharp Edges Recovery by Parametric Inference of Curves in 3D Shapes

    Full text link
    3D scanning as a technique to digitize objects in reality and create their 3D models, is used in many fields and areas. Though the quality of 3D scans depends on the technical characteristics of the 3D scanner, the common drawback is the smoothing of fine details, or the edges of an object. We introduce SepicNet, a novel deep network for the detection and parametrization of sharp edges in 3D shapes as primitive curves. To make the network end-to-end trainable, we formulate the curve fitting in a differentiable manner. We develop an adaptive point cloud sampling technique that captures the sharp features better than uniform sampling. The experiments were conducted on a newly introduced large-scale dataset of 50k 3D scans, where the sharp edge annotations were extracted from their parametric CAD models, and demonstrate significant improvement over state-of-the-art methods

    Particularities of spatial kinetics of hybrid thorium reactor installation containing the long neutron source based on magnetic trap

    Get PDF
    In this work, we study the features of the spatial kinetics of installation as a hybrid thorium reactor with an elongated plasma neutron source based on a magnetic trap. The active zone of the installation under study consists of an assembly of hexagonal fuel blocks of a unified design and a long solenoid with a high-temperature plasma column passing through the axial region of the core. Combining engineering expertise in creating nuclear reactors with a physics-technical potential for obtaining high-temperature plasma in a long magnetic trap we ensure the solution of the multidisciplinary problem posed. These studies are of undoubted practical interest, since they are necessary to substantiate the safety of operation of such hybrid systems. The research results will allow optimizing the active zone of the hybrid system with leveling the resulting offset radial and axial energy release distributions. Results of our study will be the basis for the development of new and improvement of existing methods of criticality control in related systems such as "pulsed neutron source - subcritical fuel assembly"

    The most recent (682-792 C.E.) volcanic eruption in the Jombolok lava field, East Sayan, Central Asia triggered exodus of Mongolian pre-Chinggis Khaan tribes (778-786 C.E.)

    No full text
    International audienceThis study presents new data on one of the most recent (historical) volcanic eruptions in Central Asia. The Jombolok lava field located in the East Sayan Mountains (Southern Siberia) was formed during Late Pleistocene and Holocene times. At least four phases of volcanic activity have been identified and evidences associated with the last phase have been found in the upper reaches of the Khi-Gol valley and in the Oka-Jombolok basin. The volcanic activity is represented by young basaltic lava located among older lavas. Live and dead trees have been sampled in the young lava field. Nine fragments of wood have been found embedded in lavas of the latest eruption. Dendrochronological analysis, radiocarbon dating and the analysis of historical chronicles have shown that the latest eruption occurred during the period 682-792 A.D. The volcanic activity possibly triggered the migration of Mongolian tribes out of the locality known in historical chronicles as Ergune-Kun towards the Onon River, which, 400 years later, became the place of birth and rise of Chinggis Khaan
    corecore