191 research outputs found

    Neck shrivel in European plum is caused by cuticular microcracks, resulting from rapid lateral expansion of the neck late in development

    Get PDF
    Susceptibility to the commercially important fruit disorder ‘neck shrivel’ differs among European plum cultivars. Radial cuticular microcracking occurs in the neck regions of susceptible cultivars, but not in non-susceptible ones, so would seem to be causal. However, the reason for the microcracking is unknown. The objective was to identify potential relationships between fruit growth pattern and microcracking incidence in the neck (proximal) and stylar (distal) ends of selected shrivel-susceptible and non-susceptible cultivars. Growth analysis revealed two allometric categories: The first category, the ‘narrow-neck’ cultivars, showed hypoallometric growth in the neck region (i.e., slower growth than in the region of maximum diameter) during early development (stages I + II). Later (during stage III) the neck region was ‘filled out’ by hyperallometric growth (i.e., faster than in the region of maximum diameter). The second category, the ‘broad-neck’ cultivars, had more symmetrical, allometric growth (all regions grew equally fast) throughout development. The narrow-neck cultivars exhibited extensive radial cuticular microcracking in the neck region, but little microcracking in the stylar region. In contrast, the broad-neck cultivars exhibited little microcracking overall, with no difference between the neck and stylar regions. Across all cultivars, a positive relationship was obtained for the level of microcracking in the neck region and the difference in allometric growth ratios between stage III and stages I + II. There were no similar relationships for the stylar region. The results demonstrate that accelerated stage III neck growth in the narrow-neck plum cultivars is associated with more microcracking and thus with more shrivel

    Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si3N4

    Get PDF
    This is the published version. Copyright © 2010 The American Physical SocietyMicrostructures such as intergranular glassy films (IGFs) are ubiquitous in many structural ceramics. They control many of the important physical properties of polycrystalline ceramics and can be influenced during processing to modify the performance of devices that contain them. In recent years, there has been intense research, both experimentally and computationally, on the structure and properties of IGFs. Unlike grain boundaries or dislocations with well-defined crystalline planes, the atomic scale structure of IGFs, their fundamental electronic interactions, and their bonding characteristics are far more complicated and not well known. In this paper, we present the results of theoretical simulations using ab initio methods on an IGF model in β-Si3N4 with prismatic crystalline planes. The 907-atom model has a dimension of 14.533 Å×15.225 Å×47.420 Å. The IGF layer is perpendicular to the z axis, 16.4 Å wide, and contains 72 Si, 32 N, and 124 O atoms. Based on this model, the mechanical and elastic properties, the electronic structure, the interatomic bonding, the localization of defective states, the distribution of electrostatic potential, and the optical dielectric function are evaluated and compared with crystalline β-Si3N4. We have also performed a theoretical tensile experiment on this model by incrementally extending the structure in the direction perpendicular to the IGF plane until the model fully separated. It is shown that fracture occurs at a strain of 9.42% with a maximum stress of 13.9 GPa. The fractured segments show plastic behavior and the formation of surfacial films on the β-Si3N4. These results are very different from those of a previously studied basal plane model [J. Chen et al., Phys. Rev. Lett. 95, 256103 (2005)] and add insights to the structure and behavior of IGFs in polycrystalline ceramics. The implications of these results and the need for further investigations are discussed

    Effects of Rare-Earth (R = Pr, Gd, Ho, Er) Doping on Magnetostructural Phase Transitions and Magnetocaloric Properties in Ni43-xRxMn46Sn11 Shape Memory Alloys

    Get PDF
    A series of rare-earth-doped Ni43-xRxMn46Sn11 (x= 0, 1 and R = Pr, Gd, Ho, Er) alloys was fabricated by arc melting, and their structural, magnetic, and magnetocaloric properties were studied through room temperature X-ray diffraction (XRD), differential scanning calorimetry, and magnetization measurements. Analysis of XRD data reveal that the alloys crystallize in the cubic L21 austenite phase structure as the major phase with a small trace of martensitic phase (MP). The martensitic transition temperature (TM) shifts to consecutive higher temperatures with the substitution of Pr, Gd, Ho, and Er. A drastic shift in TM by 60 K relative to the parent compound (TM= 195 K) was found for Ni42PrMn46Sn11. Large values of magnetic entropy changes (Δ SM) of 32 (Pr), 28 (Gd), and 25Jkg-1K-1 (Ho) were obtained at TM for Δ H = 50 kOe. A maximum value of the refrigeration capacity of ∼ 250Jkg-1 was obtained in the vicinity of TM for Δ H=50 kOe for the Ho-doped compound. A large exchange bias effect with HEB ∼ 1.1 kOe at 10 K was observed for the Pr-doped compound in its MP

    Effect of different tillage practices and nitrogen level on wheat production under inner terai of Nepal

    Get PDF
    A field experiment was conducted to evaluate the plant height, yield and yield attributes of wheat under different tillage practices and nitrogen level at Dang, Nepal during winter season 2018-19. The experiment was laid out in split plot design with two tillage practices viz. zero tillage and conventional tillage as main plot factor and four level of N viz. 50 kg ha-1, 75 kg ha-1, 100 kg ha-1and 125 kg ha-1 as sub plot factor and each replicated thrice.  The result revealed that there is no significant relation between tillage practice and plant height of wheat while N level significantly affect the plant height. 125 kg N ha-1 recorded the highest plant height (110.7 cm). Zero tillage recorded the highest effective tiller m-2 (254) and grain yield (3.3 t ha-1) whereas spike length, grain spike-1, biological yield and harvest index were not significant with tillage practices. Regarding the N level, 125 kg N ha-1 recorded the highest effective spike m-2 (279), spike length (10.6 cm), grain spike-1 (48), thousand grain weight (46.3 g), grain yield (3.6 t ha-1) and biological yield (9.4 t ha-1). 50 kg N ha-1 recorded the highest harvest index (42.9%). The interaction between the tillage practice and nitrogen level showed the significant effect on grain yield and harvest index where as other parameters showed non-significant relation. The zero tillage with 125 kg N ha-1 recorded the highest grain yield (3.9 t ha-1)

    Phase Transitions and Magnetocaloric Properties in MnCo1- xZrxGe Compounds

    Get PDF
    The structural, magnetic, and magnetocaloric properties of MnCo1-xZrxGe (0.01≤x≤0.04) have been studied through X-ray diffraction, differential scanning calorimetry, and magnetization measurements. Results indicate that the partial substitution of Zr for Co in MnCo1-xZrxGe decreases the martensitic transition temperature (TM). For x = 0.02, TM was found to coincide with the ferromagnetic transition temperature (TC) resulting in a first-order magnetostructural transition (MST). A further increase in zirconium concentration (x = 0.04) showed a single transition at TC. The MST from the paramagnetic to ferromagnetic state results in magnetic entropy changes (-ΔSM) of 7.2 J/kgK for ΔH = 5 T at 274 K for x = 0.02. The corresponding value of the relative cooling power (RCP) was found to be 266 J/kg for ΔH = 5 T. The observed large value of MCE and RCP makes this system a promising material for magnetic cooling applications

    Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia

    Get PDF
    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (TC), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K–319 K (43 °C–46 °C), which is suitable for magnetic hyperthermia applications. We have found that TC strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys

    Magnetic field dependence of the martensitic transition and magnetocaloric effects in Ni49BiMn35In15

    Get PDF
    The structural, magnetic, and magnetocaloric properties of the Bi-doped Heusler alloy Ni49BiMn35In15 have been investigated using room temperature X-ray diffraction (XRD) and magnetization measurements in a temperature interval of 5-400 K. The alloy at room temperature was found to be in a mixture of a high temperature austenite phase (AP) and a low temperature martensite phase (MP). A drastic shift in the martensitic transition temperature at the rate of 16 K/T from 197 K to lower temperatures was observed. A kinetic arrest phenomenon of the AP was observed in the magnetization and electrical resistivity measurements during field-cooled (FC) measurements at 5T. A metamagnetic behavior characterized by a jump in magnetization in the isothermal M(H) curves near TM was observed. The maximum value of the magnetic entropy change and refrigerant capacity at Curie temperature were found to be 5.5 Jkg-1K-1 and 312 Jkg-1 for μoΔH = 5T, respectively. A large magnetoresistance value of -56% was found near the martensitic transition

    Thermosensitive Ni-based magnetic particles for self-controlled hyperthermia applications

    Get PDF
    A number of ferromagnetic alloys in the bulk-form “thermoseeds” have been investigated for localized self-controlled hyperthermia treatment of cancer by substituting V, Mo, Cu, and Ga for Ni. The samples were prepared by arc-melting technique and annealed at 1223 K (950 °C) for 12 h in sealed quartz tubes. The structural, magnetic, and magnetocaloric properties of the samples were studied, using room temperature X-ray diffraction and a Superconducting Quantum Interference Device (SQUID) magnetometer. The magnetocaloric parameters (magnetic entropy changes, refrigeration capacity (RC), and hysteretic effects) have been calculated. It has been shown that recrystallization, i.e., annealing time and temperature, is crucial for controlling the heating characteristics of the seeds. A linear decrease in Curie temperature (TC) from 380 K (107 °C) to 200 K (−73 °C) was observed with increasing substitution of Ni by V, Mo, Cu, and Ga, while the magnetization value remained nearly constant for all substitutions. The optimal composition of these Ni-based alloys has been determined in order to allow self-controlling hyperthermia, implying a Curie temperature near the therapeutic level, 315–318 K (41–45 °C). The results showed that an extraordinary self-regulating heating effect has been achieved in Ni-based magnetic materials, which may create new vistas for hyperthermia cancer treatment

    Large inverse magnetocaloric effects and giant magnetoresistance in Ni-Mn-Cr-Sn heusler alloys

    Get PDF
    The magnetostructural transitions, magnetocaloric effects, and magnetoresistance properties of Ni45Mn43CrSn11 Heusler alloys were investigated using X-ray diffraction (XRD), field-dependent magnetization, and electrical resistivity measurements. A large inverse and direct magnetocaloric effect has been observed in Ni45Mn43CrSn11 across the martensitic and Curie transition temperature, respectively. The values of the latent heat (L = 15.5 J/g) and corresponding magnetic (∆SM) and total (∆ST) entropy changes (∆SM = 35 J/kg·K for ∆H = 5T and ∆ST = 39.7 J/kg·K) have been evaluated using magnetic and differential scanning calorimetry (DSC) measurements, respectively. A substantial jump in resistivity was observed across the martensitic transformation. A large negative magnetoresistance (~67%) was obtained at the magnetostructural transition for a field change of 5 T. The roles of the magnetic and structural changes on the transition temperatures and the potential application of Ni45Mn43CrSn11 Heusler alloys for refrigerator technology are discussed

    Phase transitions and magnetocaloric and transport properties in off-stoichiometric GdNi2Mnx

    Get PDF
    The structural, magnetic, magnetocaloric, transport, and magnetoresistance properties of the rare-earth intermetallic compounds GdNi2Mnx (0.5 ≤ x ≤ 1.5) have been studied. The compounds with x = 0.5 and 0.6 crystallize in the cubic MgCu2 type phase, whereas samples with x ≥ 0.8 form a mixed MgCu2 and rhombohedral PuNi3 phase. A second order magnetic phase transition from a ferromagnetic to paramagnetic state was observed near the Curie temperature (TC). The GdNi2Mnx (0.5 ≤ x ≤ 1.5) compounds order in a ferrimagnetic structure in the ground state. The largest observed values of magnetic entropy changes (at TC for ΔH = 5T) were 3.9, 3.5, and 3.1 J/kg K for x = 0.5, 0.6, and 0.8, respectively. The respective relative values of the cooling power were 395, 483, and 220 J/kg. These values are greater than some well-known prototype magnetocaloric materials such as Gd (400 J/kg) and Gd5Si2Ge2 (240 J/kg). Analysis of the resistivity data showed a T2 dependence at low temperatures, suggesting strong electron-phonon interactions, whereas at higher temperatures s-d scattering was dominated by the electron-phonon contribution, resulting in a slow increase in resistivity. Magnetoresistance values of ∼-1.1% were found for x = 0.5 near TC, and -7% for x = 1.5 near T = 80 K
    • …
    corecore