23 research outputs found

    Systematic review of interventions to improve patient uptake and completion of pulmonary rehabilitation in COPD

    Get PDF
    ABSTRACT Pulmonary rehabilitation is considered a key management strategy for chronic obstructive pulmonary disease (COPD), but its effectiveness is undermined by poor patient uptake and completion. The aim of this review was to identify, select and synthesise the available evidence on interventions for improving uptake and completion of pulmonary rehabilitation in COPD. Electronic databases and trial registers were searched for randomised trials evaluating the effect of an intervention compared with a concurrent control group on patient uptake and completion. The primary outcomes were the number of participants who attended a baseline assessment and at least one session of pulmonary rehabilitation (uptake), and the number of participants who received a discharge assessment (completion). Only one quasi-randomised study (n=115) (of 2468 records identified) met the review inclusion criteria and was assessed as having a high risk of bias. The point estimate of effect did, however, indicate greater programme completion and attendance rates in participants allocated to pulmonary rehabilitation plus a tablet computer (enabled with support for exercise training) compared with controls ( pulmonary rehabilitation only). There is insufficient evidence to guide clinical practice on interventions for improving patient uptake and completion of pulmonary rehabilitation in COPD. Despite increasing awareness of patient barriers to pulmonary rehabilitation, our review highlights the existing under-appreciation of interventional trials in this area. This knowledge gap should be viewed as an area of research priority due to its likely impact in undermining wider implementation of pulmonary rehabilitation and restricting patient access to a treatment considered the cornerstone of COPD

    Oral bovine colostrum supplementation does not increase circulating insulin-like growth factor-1 concentration in healthy adults: results from short- and long-term administration studies

    Get PDF
    Purpose: Bovine colostrum is available in health food shops and as a sports food supplement and is rich in antibodies and growth factors including IGF-1. World Anti-Doping Agency advises athletes against taking colostrum for fear of causing increased plasma IGF-1. There are also concerns that colostrum may theoretically stimulate malignancy in organs which express IGF-1 receptors. We, therefore, determined changes in plasma IGF-1 levels in subjects taking colostrum or placebo for 1 day, 4 weeks, and 12 weeks. Methods: Plasma IGF1 levels were determined in healthy males (n = 16) who ingested 40 g bovine colostrum or placebo along with undertaking moderate exercise for total period of 4.5 h. Two further studies followed changes in IGF1 using double-blind, parallel group, placebo-controlled, randomized trials of colostrum or placebo (N = 10 per arm, 20 g/day for 4 weeks and N = 25 colostrum, N = 29 placebo arm 20 g/day for 12 weeks). Results: Baseline IGF1 levels 130 ± 36 ng/ml. 4.5 h protocol showed no effect of colostrum on plasma IGF1 (ANOVA, treatment group: p = 0.400, group × time: p = 0.498, time p = 0.602). Similarly, no effect of colostrum ingestion was seen following 4 week (ANOVA, group: p = 0.584, group × time interaction: p = 0.083, time p = 0.243) or 12 week (ANOVA, group: p = 0.400, group × time interaction: p = 0.498, time p = 0.602) protocol. Conclusions: Ingestion of standard recommended doses of colostrum does not increase IGF-1 levels in healthy adults, providing additional support for the safety profile of colostrum ingestion

    E-cigarettes: controversies within the controversy

    Get PDF
    10 years have passed since e-cigarettes were first marketed in the UK. Since then, e-cigarettes have engendered substantial controversy in the realms of public health and respiratory medicine

    ColdZyme® Mouth Spray reduces duration of upper respiratory tract infection symptoms in endurance athletes under free living conditions

    Get PDF
    Upper respiratory tract infection (URTI) can compromise athlete preparation and performance, so countermeasures are desirable. The aim of this study was to assess the effects of ColdZyme® Mouth Spray (ColdZyme) on self-reported upper respiratory tract infection in competitive endurance athletes under free-living conditions. One hundred and twenty-three endurance-trained, competitive athletes (recruited across 4 sites in England, UK) were randomised to control (no treatment, n = 61) or ColdZyme (n = 62) for a 3-month study period (between December 2017 – February 2018; or December 2018 – April 2019). They recorded daily training and illness symptoms (Jackson common cold questionnaire) during the study period. A total of 130 illness episodes were reported during the study with no difference in incidence between groups (episodes per person: 1.1 ± 0.9 Control, 1.0 ± 0.8 ColdZyme, P = 0.290). Episode duration was significantly shorter in ColdZyme compared to Control: Control 10.4 ± 8.5 days vs ColdZyme 7.7 ± 4.0 days, P = 0.016). Further analysis to compare episodes with poor vs good compliance with ColdZyme instructions for use (IFU) within the ColdZyme group showed a further reduction in duration of URTI when compliance was good (9.3 ± 4.5 days in ColdZyme poor IFU compliance vs 6.9 ± 3.5 days in ColdZyme good IFU compliance, P = 0.040). ColdZyme may be an effective countermeasure to reduce URTI duration, which was significantly lower (by 26-34%) in the ColdZyme treatment group (with no influence on incidence). This may have implications for athlete performance

    Intestinal fatty-acid binding protein and gut permeability responses to exercise

    Get PDF
    Purpose Intestinal cell damage due to physiological stressors (e.g. heat, oxidative, hypoperfusion/ischaemic) may contribute to increased intestinal permeability. The aim of this study was to assess changes in plasma intestinal fatty acid-binding protein (I-FABP) in response to exercise (with bovine colostrum supplementation, Col, positive control) and compare this to intestinal barrier integrity/permeability (5 h urinary lactulose/rhamnose ratio, L/R). Methods In a double-blind, placebo-controlled, crossover design, 18 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac). For each arm participants performed two baseline (resting) intestinal permeability assessments (L/R) pre-supplementation and one post-exercise following supplementation. Blood samples were collected pre- and post-exercise to determine I-FABP concentration. Results Two-way repeated measures ANOVA revealed an arm?×?time interaction for L/R and I-FABP (P?<?0.001). Post hoc analyses showed urinary L/R increased post-exercise in Plac (273% of pre, P?<?0.001) and Col (148% of pre, P?<?0.001) with post-exercise values significantly lower with Col (P?<?0.001). Plasma I-FABP increased post-exercise in Plac (191% of pre-exercise, P?=?0.002) but not in the Col arm (107%, P?=?0.862) with post-exercise values significantly lower with Col (P?=?0.013). Correlations between the increase in I-FABP and L/R were evident for visit one (P?=?0.044) but not visit two (P?=?0.200) although overall plots/patterns do appear similar for each. Conclusion These findings suggest that exercise-induced intestinal cellular damage/injury is partly implicated in changes in permeability but other factors must also contribute

    Inflammatory responses to acute exercise during pulmonary rehabilitation in patients with COPD

    Get PDF
    Objective Pulmonary rehabilitation is a cornerstone treatment in the management of chronic obstructive pulmonary disease (COPD). Acute bouts of exercise can lead to short bursts of inflammation in healthy individuals. However, it is unclear how COPD patients respond to acute bouts of exercise. This study assessed inflammatory responses to exercise in COPD patients at the start (phase 1) and end (phase 2) of pulmonary rehabilitation. Methods Blood samples were collected before and after an acute exercise bout at the start (phase 1, n = 40) and end (phase 2, n = 27) of pulmonary rehabilitation. The primary outcome was change in fibrinogen concentrations. Secondary outcomes were changes in CRP concentrations, total/differential leukocyte counts, markers of neutrophil activation (CD11b, CD62L and CD66b), and neutrophil subsets (mature, suppressive, immature, progenitor). Results Acute exercise (phase 1) did not induce significant changes in fibrinogen (p = 0.242) or CRP (p = 0.476). Total leukocyte count [mean difference (MD), 0.5 ± 1.1 (109 L−1); p = 0.004], neutrophil count [MD, 0.4 ± 0.8 (109 L−1); p < 0.001], and immature neutrophils (MD, 0.6 ± 0.8%; p < 0.001) increased post-exercise. Neutrophil activation markers, CD11b (p = 0.470), CD66b (p = 0.334), and CD62L (p = 0.352) were not significantly altered post-exercise. In comparison to the start of pulmonary rehabilitation (phase 2), acute exercise at the end of pulmonary rehabilitation led to a greater fibrinogen response (MD, 84 mg/dL (95% CI − 14, 182); p = 0.045). Conclusion An acute bout of exercise does not appear to induce significant alterations in the concentrations of inflammatory mediators but can increase white blood cell subsets post-exercise. A greater fibrinogen response to acute exercise is seen at the end of pulmonary rehabilitation when compared to the start. Further research is required to understand the clinical context of these acute inflammatory responses to exercise

    The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat

    Get PDF
    Purpose Exercise-induced changes in intestinal permeability are exacerbated in the heat. The aim of this study was to determine the effect of 14 days of bovine colostrum (Col) supplementation on intestinal cell damage (plasma intestinal fatty acid-binding protein, I-FABP) and bacterial translocation (plasma bacterial DNA) following exercise in the heat. Methods In a double-blind, placebo-controlled, crossover design, 12 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac) consisting of 60 min treadmill running at 70% maximal aerobic capacity (30 ??C, 60% relative humidity). Blood samples were collected pre-exercise (Pre-Ex), post-exercise (Post-Ex) and 1 h post-exercise (1 h Post-Ex) to determine plasma I-FABP concentration, and bacterial DNA (for an abundant gut species, Bacteroides). Results Two-way repeated measures ANOVA revealed an arm ?~ time interaction for I-FABP (P = 0.005, with greater Post- Ex increase in Plac than Col, P = 0.01: Plac 407 ?} 194% of Pre-Ex vs Col, 311 ?} 134%) and 1 h Post-Ex (P = 0.036: Plac 265 ?} 80% of Pre-Ex vs Col, 229 ?} 56%). There was no interaction (P = 0.904) but there was a main effect of arm (P = 0.046) for plasma Bacteroides/total bacterial DNA, with lower overall levels evident in Col. Conclusion This is the first investigation to demonstrate that Col can be effective at reducing intestinal injury following exercise in the heat, but exercise responses (temporal pattern) of bacterial DNA were not influenced by Col (although overall levels may be lower).publishersversionPeer reviewe

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore