25 research outputs found

    Eco-Physiological Study of the Effect of P Levels and Coated P Fertilizers on the Wheat Grain Yield (Triticum aestivum L.), Dirab, Riyadh, Saudi Arabia

    Get PDF
    The soils in the Kingdom of Saudi Arabia suffer from severe P deficiency. This is attributed to the high soil pH due to the presence of calcium carbonate. Under such conditions, the utilization of fertilizer P by plants is generally very low due to sorption of P by soils. The objectives of this study were to assess the suitability of coating of P fertilizer along with soil P application on available soil P content and wheat yield in calcareous soil. Soil application rates of P (0, 150, 300 and 450 kg ha-1) as di-Ammonium phosphate (DAP) applied just before sowing. Coating types included (No coated, humic acid with different %, bitumen emulsion and bitumen emulsion+ 5% clay). The results indicated that, application of different rates of soil P has a significant effect on the available P soil content. The available P reached 18.9, 31.0, 36.0 mg kg-1 under application of 150, 300 and 450 kg DAP ha-1, respectively. The results showed addition of 300 kg DAP ha-1 resulted in high content of available soil P and no need for further application of P fertilizer. The coated DAP fertilizer with HA, bitumen emulsion and bitumen emulsion+ clay did not increases the available P in soil compared with no coated. Under current experiment, coating of P fertilizer by HA, bitumen emulsion and bitumen emulsion+5% clay along with medium rates of soil P fertilizer may contribute to improve P fertilizer efficiency and increase wheat grain yield cultivated in calcareous soil

    Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars

    Get PDF
    Salinity stress is one of the potential threats that adversely affect the productivity of many cereal crops worldwide. Spraying plants with nano-Zn particles may lessen effectively such negative impacts on plants; yet its mode of action is still not well explored. This study was performed to evaluate the effects of spraying nano-Zn particles with varying concentrations (0, 20, 50 and 80 mg L-1) on two wheat cultivars irrigated with saline water (EC = 6.3 dS m-1) versus a non-saline one. The key results revealed that root and shoot weights decreased significantly under salinity stress conditions, while improved considerably with nano-Zn-particles foliar application up to 50 mg nanoZn L-1; thereafter significant reductions occurred. Also, shoot and root lengths as well as plant leaf area index improved considerably owing to this foliar application. Clearly, roots and shoots weights of wheat plants sprayed with nano-Zn particles under salinity stress conditions exhibited higher values than the corresponding ones that was grown under non-saline conditions without nano-Zn-particles applications. Unexpectedly, this foliar spray led to significant reductions in plant pigments and also in enzymatic and non-enzymatic antioxidants in plants. Yet, this foliar spray enhanced formation of total soluble sugars and proline, and raised significantly Ca contents in wheat roots and shoots, and to some extent K contents. In conclusion, the foliar application of nano-Zn particles increased plant growth under salty stress conditions via two parallel processes, i.e., stimulating formation of osmolytes and stimulating nutrient uptake which may, in turn, increase plant metabolism. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CCPeer reviewe

    Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings

    No full text
    The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs) using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM) was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD) patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L.) seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L−1) AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L−1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation

    Improvement of Phytopharmaceutical and Alkaloid Production in Periwinkle Plants by Endophyte and Abiotic Elicitors

    No full text
    Periwinkle plant represents a major source of immensely vital terpenoid indole alkaloids and natural antioxidants which are widely used in cancer chemotherapy. A pot experiment was done to evaluate the role of two periwinkle endophytes (Streptomyces sp. and Bacillus sp.) with or without abiotic elicitors (aluminum chloride, tryptophan, and chitosan) on plant biomass, physio-biochemical attributes, phytopharmaceutical constituents, and alkaloid production. Inoculation with endophyte microbes significantly increased plant growth, nitrogen, phosphorus, potassium, carotenoids, ascorbic acid, and alkaloid yield. It also decreased oxidative biomarkers (hydrogen peroxide and malondialdehyde) and had no significant effects on flavonoids and anthocyanin. In this regard, Streptomyces sp. was more effective than Bacillus sp. Foliar spraying with chitosan significantly increased plant growth, chlorophyll, ions, antioxidant capacity, phytopharmaceutical constituents (total soluble phenols, flavonoids, and anthocyanin), and alkaloid yield, associated with a decline in oxidative biomarkers. Conversely, aluminum chloride application generally increased oxidative biomarkers, which was associated with a decreasing effect on plant growth, chlorophyll, and ions. Application of either tryptophan or chitosan with endophyte microbes increased plant growth, chlorophyll, ions, antioxidants, and alkaloid; meanwhile, it decreased oxidative biomarkers. On the contrary, aluminum chloride with endophytes evoked oxidative damage that was associated with a reduction in plant growth, chlorophyll, ions, and phytopharmaceutical constituents. The current study provides a proof-of-concept of the use of the endophyte Streptomyces sp. with chitosan for enhancing periwinkle plant biomass, phytopharmaceuticals accumulation, and alkaloid production

    Improvement of Phytopharmaceutical and Alkaloid Production in Periwinkle Plants by Endophyte and Abiotic Elicitors

    No full text
    Periwinkle plant represents a major source of immensely vital terpenoid indole alkaloids and natural antioxidants which are widely used in cancer chemotherapy. A pot experiment was done to evaluate the role of two periwinkle endophytes (Streptomyces sp. and Bacillus sp.) with or without abiotic elicitors (aluminum chloride, tryptophan, and chitosan) on plant biomass, physio-biochemical attributes, phytopharmaceutical constituents, and alkaloid production. Inoculation with endophyte microbes significantly increased plant growth, nitrogen, phosphorus, potassium, carotenoids, ascorbic acid, and alkaloid yield. It also decreased oxidative biomarkers (hydrogen peroxide and malondialdehyde) and had no significant effects on flavonoids and anthocyanin. In this regard, Streptomyces sp. was more effective than Bacillus sp. Foliar spraying with chitosan significantly increased plant growth, chlorophyll, ions, antioxidant capacity, phytopharmaceutical constituents (total soluble phenols, flavonoids, and anthocyanin), and alkaloid yield, associated with a decline in oxidative biomarkers. Conversely, aluminum chloride application generally increased oxidative biomarkers, which was associated with a decreasing effect on plant growth, chlorophyll, and ions. Application of either tryptophan or chitosan with endophyte microbes increased plant growth, chlorophyll, ions, antioxidants, and alkaloid; meanwhile, it decreased oxidative biomarkers. On the contrary, aluminum chloride with endophytes evoked oxidative damage that was associated with a reduction in plant growth, chlorophyll, ions, and phytopharmaceutical constituents. The current study provides a proof-of-concept of the use of the endophyte Streptomyces sp. with chitosan for enhancing periwinkle plant biomass, phytopharmaceuticals accumulation, and alkaloid production

    Antimalarial and Antileishmanial Flavonoids from <i>Calendula officinalis</i> Flowers

    No full text
    Calendula officinalis L. (Asteraceae), commonly known as English or pot marigold, is an herbaceous plant with edible flowers. In this study, UPLC-ESI-MS/MS analysis was used for tentative identification of compounds in marigold flower methanol extract (MFE). In addition, RP-HPLC-DAD analysis was used to quantify the flavonoids hesperidin and rutin in MFE. The antileishmanial potentials of the crude extract and compounds were evaluated against Leishmania major promastigotes and amastigotes. Further, in vivo 4-day antimalarial testing of the extract and compounds was carried out at doses of 25 mg kg−1 per day using mice infected with ANKA strain of Plasmodium berghei, following standard procedure. Molecular docking studies were carried out to assess the binding mode of flavonoids against the vital targets of L. major, including pteridine reductase 1 and farnesyl diphosphate synthase enzymes. The in silico antimalarial potentials of flavonoids were evaluated against wild-type Plasmodium falciparum dihydrofolate reductase-thymidylate synthase and phosphoethanolamine methyltransferase enzymes. Twenty compounds were tentatively identified by UPLC-ESI-MS/MS analysis of MFE, of which, seven flavonoids, six saponins, three phenolic acids, three fatty acids, and a triterpene glycoside were identified. MFE phytochemical analysis revealed that hesperidin content was 36.17 mg g−1 extract, that is, 9.9-fold their content of rutin (3.65 mg g−1 extract). The method was validated to ensure reproducibility of the results. The tested samples exhibited antileishmanial potentials against L. major promastigotes, with IC50 values of 98.62, 118.86, and 104.74 ng µL−1 for hesperidin, rutin, and MFE, respectively. Likewise, hesperidin showed inhibitory potentials against L. major amastigote with an IC50 value of 108.44 ± 11.2 µM, as compared to miltefosine. The mean survival time, parasitemia, and suppression percentages showed similar results for the three samples against ANKA strain of P. berghei. The docking studies showed good binding affinities of rutin and hesperidin with numerous H-bonding and van der Waals interactions. Marigold flowers are nutraceuticals, presenting important sources of bioactive flavonoids with potential against neglected tropical diseases

    Cd Phytoextraction Potential in Halophyte <i>Salicornia fruticosa</i>: Salinity Impact

    No full text
    The phytoextraction potential of halophytes has been broadly recognized. Nevertheless, the impact of salt on the accumulation proprieties of cadmium (Cd) in different halophytic species, likely linked to their salt tolerance, remains unclear. A hydroponic culture was used to investigate the impact of salinity on Cd tolerance as well as accumulation in the distinct halophyte Salicornia fruticosa (S. fruticosa). The plant was subjected to 0, 25, and 50 μg L−1 Cd (0-Cd, L-Cd, and H-Cd, respectively), with or without 50, 100, and 200 mM NaCl in the nutrient solution. Data demonstrated that Cd individually induced depletion in biomass accumulation. NaCl amplified the Cd tolerance induced by enhanced biomass gaining and root length, which was associated with adequate transpiration, leaf succulence, elevated levels of ascorbic acid (ASA), reduced glutathione (GSH), phytochelatins (PCs), and proline as well as antioxidant enzymatic capacity via upregulation of peroxidases (PO), glutathione peroxidase, ascorbate peroxidase, and superoxide dismutase. All Cd treatments decreased the uptake of calcium (Ca) as well as potassium (K) and transport to the shoots; however, sodium (Na) accumulation in the shoots was not influenced by Cd. Consequently, S. fruticosa retained its halophytic properties. Based on the low transfer efficiency and high enrichment coefficient at 0–50 mM NaCl, an examination of Cd accumulation characteristics revealed that phytostabilization was the selected phytoremediation strategy. At 100–200 mM NaCl, the high aboveground Cd-translocation and high absorption efficiency encourage phytoremediation via phytoextraction. The results revealed that S. fruticosa might be also potentially utilized to renovate saline soils tainted with heavy metals (HMs) because of its maximized capacity for Cd tolerance magnified by NaCl. Cd accumulation in S. fruticosa is mainly depending on the NaCl concentration. Future studies may be established for other heavy metal pollutants screening, to detect which could be extracted and/or stabilized by the S. fruticosa plant; moreover, other substrates presenting high electrical conductivity should be identified for reclamation

    Endophytic Fungus from Opuntia ficus-indica: A Source of Potential Bioactive Antimicrobial Compounds against Multidrug-Resistant Bacteria

    No full text
    Endophytic Aspergillus species represent an inexhaustible source for many medicinally important secondary metabolites. The current study isolated the endophytic Aspergillus niger (OL519514) fungus from Opuntia ficus-indica fruit peels. The antibacterial activities were reported for both Aspergillus species and Opuntia ficus-indica fruit peel extract. Extraction of the endophytic fungal metabolites using ethyl acetate and fractionation was performed, yielding dihydroauroglaucin (C1), isotetrahydroauroglaucin (C2), and cristatumin B (C3). Resistant bacterial strains were used to investigate the efficiency of the total fungal ethyl acetate extract (FEA) and the isolated compounds. FEA showed promising wide spectrum activity. (C3) showed excellent activity against selected Gram-negative resistant bacteria; However, (C2) exhibited tremendous activity against the tested Gram-positive resistant strains; conversely, (C1) possessed the lowest antibacterial activity compared to the two other compounds. An in silico virtual molecular docking demonstrated that cristatumin B was the most active antimicrobial compound against the selected protein targets. In conclusion, the active metabolites newly isolated from the endophytic fungus Aspergillus niger (OL519514) and present in plants&rsquo; waste can be a promising antimicrobial agent against multidrug-resistant bacteria

    Endophytic Fungus from <i>Opuntia ficus-indica:</i> A Source of Potential Bioactive Antimicrobial Compounds against Multidrug-Resistant Bacteria

    No full text
    Endophytic Aspergillus species represent an inexhaustible source for many medicinally important secondary metabolites. The current study isolated the endophytic Aspergillus niger (OL519514) fungus from Opuntia ficus-indica fruit peels. The antibacterial activities were reported for both Aspergillus species and Opuntia ficus-indica fruit peel extract. Extraction of the endophytic fungal metabolites using ethyl acetate and fractionation was performed, yielding dihydroauroglaucin (C1), isotetrahydroauroglaucin (C2), and cristatumin B (C3). Resistant bacterial strains were used to investigate the efficiency of the total fungal ethyl acetate extract (FEA) and the isolated compounds. FEA showed promising wide spectrum activity. (C3) showed excellent activity against selected Gram-negative resistant bacteria; However, (C2) exhibited tremendous activity against the tested Gram-positive resistant strains; conversely, (C1) possessed the lowest antibacterial activity compared to the two other compounds. An in silico virtual molecular docking demonstrated that cristatumin B was the most active antimicrobial compound against the selected protein targets. In conclusion, the active metabolites newly isolated from the endophytic fungus Aspergillus niger (OL519514) and present in plants’ waste can be a promising antimicrobial agent against multidrug-resistant bacteria

    Morpho-Physiological and Anatomical Alterations of Salt-Affected Thompson Seedless Grapevine (Vitis vinifera L.) to Brassinolide Spraying

    No full text
    Salinity is one of the most critical crises worldwide that ultimately compromises future food security. Brassinosteroids including brassinolide (BL) are a class of polyhydroxy steroids phytohormones, that play a crucial role in several plant metabolic pathways and boost plants&rsquo; stress tolerance, but less data is accessible on its function in salt-affected grapevine. The experiment was conducted throughout the 2019 and 2020 experimental seasons at EL-Baramon experimental farm, Horticulture Research Institute, Mansoura, Egypt, to recognize the remediation potential of BL (1 and 2 mg L&minus;1) in lightening salinity (NaCl at 1000, 2000, and 3000 mg L&minus;1) injury on Thompson seedless grapevine seedlings (H4 strain) growth and physio-anatomical attributes. Data advocated that while salinity reduced growth attributes, BL applications substantially improved the overall salt-affected plant performance. Salinity stress significantly decreased photosynthetic pigment, relative water content, and ions percentage (nitrogen, phosphorus, potassium, potassium/sodium ratio). Alternatively, BL spraying significantly (p &le; 0.05) increased the photosynthetic pigment, maintaining a favorable potassium/sodium ratio and increasing the ions percentage. Additionally, increasing salinity levels significantly boost plant sodium percentage and induce a membrane malfunction associated with increased membrane permeability; conversely, the application of BL decreased the sodium percentage associated with decreasing membrane permeability relative to non-treated salinized plants. Moreover, salinity and/or BL significantly improved the antioxidant capacity associated with rising proline accumulation and antioxidant enzyme activities. Anatomically, salinity stress considerably modified leaf structure; meanwhile, the spraying with BL drastically mitigates the harmful effects of salinity on leaf anatomy. Additionally, salt-affected plant cells explained various obvious organelles ultrastructural modifications and cellular damage; meanwhile, BL spraying to salt-affected plants repealed the ultrastructural modifications of cell organelles. Taken together, BL, especially 2 mg L&minus;1, has a great potential to boost the salt tolerance of Thompson seedless grapevine seedlings (H4 strain). It improves salt tolerance by sustaining higher photosynthetic pigment concentrations, maintaining ion homeostasis, regulating water status, and stimulating antioxidant capacity as well as maintaining leaf anatomical attributes
    corecore