70 research outputs found

    Age-Related Changes of Cystatin C Expression and Polarized Secretion by Retinal Pigment Epithelium: Potential Age-Related Macular Degeneration Links

    Get PDF
    PURPOSE: Cystatin C, a potent cysteine proteinase inhibitor, is abundantly secreted by the RPE and may contribute to regulating protein turnover in the Bruch's membrane (BrM). A cystatin C variant associated with increased risk of developing AMD and Alzheimer's disease (AD) presents reduced secretion levels from RPE. The purpose of this study was to analyze the effects of age and the accumulation of advanced glycation end-products (AGEs) on the expression and secretion of cystatin C by the RPE.METHODS: Confluent monolayers of human fetal RPE (hfRPE) cells were cultured using an in vitro model mimicking extracellular AGE accumulation. Cystatin C expression, secretion, and its polarity were analyzed following culture on AGE-containing BrM mimics (AGEd versus non-AGEd). Monolayer barrier properties were assessed by transepithelial resistance measurements. The relative level of cystatin C protein expression in human RPE in situ was assessed immunohistochemically in relation to age.RESULTS: Advanced glycation end product-exposed RPE monolayers presented significantly decreased cystatin C expression and secretion. Basolateral secretion was fully established by week 8 in non-AGEd conditions. In AGEd cultures, polarity of secretion was impaired despite maintenance of physiological barrier properties of the monolayer. In the macula region of RPE/choroid segments from human eyes, the level of cystatin C protein was reduced with increasing donor age.CONCLUSIONS: Exposure to AGEs reduces expression of cystatin C and affects its normal secretion in cultured RPE. Age-related changes of cystatin C in the RPE from the posterior pole may compromise its extracellular functions, potentially contributing to AMD pathogenesis.</p

    Experimental Models for Study of Retinal Pigment Epithelial Physiology and Pathophysiology

    Get PDF
    We have developed a cell culture procedure that can produce large quantities of confluent monolayers of primary human fetal retinal pigment epithelium (hfRPE) cultures with morphological, physiological and genetic characteristics of native human RPE. These hfRPE cell cultures exhibit heavy pigmentation, and electron microscopy show extensive apical membrane microvilli. The junctional complexes were identified with immunofluorescence labeling of various tight junction proteins. Epithelial polarity and function of these easily reproducible primary cultures closely resemble previously studied mammalian models of native RPE, including human. These results were extended by the development of therapeutic interventions in several animal models of human eye disease. We have focused on strategies for the removal of abnormal fluid accumulation in the retina or subretinal space. The extracellular subretinal space separates the photoreceptor outer segments and the apical membrane of the RPE and is critical for maintenance of retinal attachments and a whole host of RPE/retina interactions

    Experimental models for study of retinal pigment epithelial physiology and pathophysiology

    Get PDF
    Abstract We have developed a cell culture procedure that can produce large quantities of confluent monolayers of primary human fetal retinal pigment epithelium (hfRPE) cultures with morphological, physiological and genetic characteristics of native human RPE. These hfRPE cell cultures exhibit heavy pigmentation, and electron microscopy show extensive apical membrane microvilli. The junctional complexes were identified with immunofluorescence labeling of various tight junction proteins. Epithelial polarity and function of these easily reproducible primary cultures closely resemble previously studied mammalian models of native RPE, including human. These results were extended by the development of therapeutic interventions in several animal models of human eye disease. We have focused on strategies for the removal of abnormal fluid accumulation in the retina or subretinal space. The extracellular subretinal space separates the photoreceptor outer segments and the apical membrane of the RPE and is critical for maintenance of retinal attachments and a whole host of RPE/retina interactions

    IL-1b and IL-18

    Get PDF
    PURPOSE. The inflammatory process plays a major role in the pathogenesis of AMD, and recent data indicate the involvement of inflammasomes. Inflammasomes are intracellular structures that trigger inflammation by producing mature interleukin-(IL)-1b and IL-18. This study examined the capacity of 7-ketocholesterol (7KCh), an oxysterol that accumulates in the retinal pigmented epithelium (RPE) and choroid, to initiate inflammasome formation in RPE and bone marrow-derived cells. METHODS. Tested cells included fetal human RPE (fhRPE) , human ARPE-19 cells, primary human brain microglia cells, and human THP-1 monocyte cells. 7-Ketocholesterol and other compounds were added to the cell cultures, and their stimulatory effects were determined by quantitative PCR and release of cytokines, measured by ELISA and Western blotting. RESULTS. 7-Ketocholesterol efficiently induced inflammasome formation by all primed cell populations, but secreted cytokine levels were higher in cultures of bone marrow-derived cells (microglia and THP-1 cells) than in RPE cultures. Interestingly, inflammasomes formed in cells of the two populations differed strikingly in their preferential production of the two cytokines. Thus, whereas bone marrow-derived cells produced levels of IL-1b that were higher than those of IL-18, the opposite was found with RPE cells, which secreted higher levels of IL-18. Importantly, Western blot analysis showed that IL-18, but not IL-1b, was expressed constitutively by RPE cells. CONCLUSIONS. 7-Ketocholesterol efficiently stimulates inflammasome formation and is conceivably involved in the pathogenesis of AMD. In contrast to bone marrow-derived cells, RPE cells produced higher levels of IL-18 than IL-1b. Further, IL-18, a multifunctional cytokine, was expressed constitutively by RPE cells. These observations provide new information about stimuli and cells and their products assumed to be involved in the pathogenesis of AMD

    CNTF Mediates Neurotrophic Factor Secretion and Fluid Absorption in Human Retinal Pigment Epithelium

    Get PDF
    Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase). CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFβ2. It also significantly increases fluid absorption (JV) across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruch's membrane complex and provide protection against neurodegenerative disease

    Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet?

    Full text link
    Pluripotent stem cells (PSCs) are a potential replacement tissue source for degenerative diseases. Age-related macular degeneration (AMD) is a blinding disease triggered by degeneration of the retinal pigment epithelium (RPE), a monolayer tissue that functionally supports retinal photoreceptors. Recently published clinical and preclinical studies have tested PSC-derived RPE as a potential treatment for AMD. Multiple approaches have been used to manufacture RPE cells, to validate them functionally, to confirm their safety profile, and to deliver them to patients either as suspension or as a monolayer patch. Since most of these studies are at an early regulatory approval stage, the primary outcome has been to determine the safety of RPE transplants in patients. However, preliminary signs of efficacy were observed in a few patients. Here, we review the current progress in the PSC-derived RPE transplantation field and provide a comparative assessment of various approaches under development as potential therapeutics for AMD. </jats:p

    PDGF-C and -D induced proliferation/migration of human RPE is abolished by inflammatory cytokines. Invest Ophthalmol Vis Sci 2007;48

    No full text
    PURPOSE. The role of growth factors and inflammation in regulating retinal pigment epithelial (RPE) function is complex and still poorly understood. The present study investigated human RPE cell proliferation and migration mediated by platelet-derived growth factor (PDGF) and inflammatory cytokines. METHODS. Human fetal RPE (hfRPE) cells were obtained as previously described. Gene expressions of PDGF isoforms and their receptors were detected using real-time PCR. Protein expression, activity, and localization of PDGFR-␣ and -␤ were analyzed by Western blot and immunohistochemistry. BrdU incorporation and wound healing assays were used to test the effects of different PDGF isoforms and inflammatory cytokines on hfRPE proliferation and migration. Annexin-V and phalloidin staining were used to detect apoptosis and the actin cytoskeleton, respectively. RESULTS. PDGF-C and PDGF-D proteins are expressed in native human adult RPE, and mRNA levels are up to 100-fold higher than PDGF-A and -B. PDGFR-␣ and -␤ proteins are expressed in native adult RPE and hfRPE (mainly localized to the apical membrane). In hfRPE, these receptors can be activated by PDGF-CC and -DD. PDGF-CC, -DD, and -BB significantly increased hfRPE proliferation, whereas PDGF-DD, -BB, and -AB significantly increased cell migration. An inflammatory cytokine mixture (TNF-␣/IL-1␤/IFN-␥) completely inhibited the stimulatory effect of PDGF-BB, -CC, and -DD; in contrast, this mixture stimulated the proliferation of choroidal cells. This inflammatory cytokine mixture also induced apoptosis, significant disruption of actin filaments and zonula occludens (ZO-1), and a decrease in transepithelial resistance. CONCLUSIONS. These results suggest that proinflammatory cytokines in vivo can inhibit the proliferative effect of PDGF on human RPE and, at the same time, stimulate the proliferation of choroidal cells. They also suggest an important role of proinflammatory cytokines in overcoming local proliferative/woundhealing responses, thereby controlling the development of disease processes at the retina/RPE/choroid interface. (Invest Ophthalmol Vis Sci. 2007;48:5722-5732

    Validation of iPS Cell-Derived RPE Tissue in Animal Models

    Full text link
    Previous work suggests that replacing diseased Retinal Pigment Epithelium (RPE) with a healthy autologous RPE sheet can provide vision rescue for AMD patients. We differentiated iPSCs into RPE using a directed differentiation protocol. RPE cells at the immature RPE stage were purified and seeded onto either electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds or non-biodegradable polyester cell culture inserts and compared the two tissues. In vitro, PLGA and polyester substrates produced functionally similar results. Following in vitro evaluation, we tested RPE tissue in animal models for safety and function. Safety studies were conducted in RNU rats using an injection composed of intact cells and homogenized scaffolds. To assess function and develop surgical procedures, the tissues were implanted into an acute RPE injury model pig eye and evaluated using optical coherence tomography (OCT), multifocal ERG (mfERG), and histology. Subretinal injection studies in rats demonstrated safety of the implant. Biodegradability and biocompatibility data from a pig model demonstrated that PLGA scaffold is safe, with the added benefit of being resorbed by the body over time, leaving no foreign material in the eye. We confirmed that biodegradable substrates provide suitable support for RPE maturation and transplantation
    corecore