1,386 research outputs found

    Data Mining and Hypothesis Refinement Using a Multi-Tiered Genetic Algorithm

    Get PDF
    This is the published version. Copyright De GruyterThis paper details a novel data mining technique that combines set objects with an enhanced genetic algorithm. By performing direct manipulation of sets, the encoding process used in genetic algorithms can be eliminated. The sets are used, manipulated, mutated, and combined, until a solution is reached. The contributions of this paper are two-fold: the development of a multi-tiered genetic algorithm technique, and its ability to perform not only data mining but also hypothesis refinement. The multi-tiered genetic algorithm is not only a closer approximation to genetics in the natural world, but also a method for combining the two main approaches for genetic algorithms in data mining, namely, the Pittsburg and Michigan approaches. These approaches were combined, and implemented. The experimental results showed that the developed system can be a successful data mining tool. More important, testing the hypothesis refinement capability of this approach illustrated that it could take a data model generated by some other technique and improves upon the overall performance of the data model

    Wing Leading Edge Concepts for Noise Reduction

    Get PDF
    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields

    Fixed-dose combination antituberculosis therapy as a risk factor for tuberculosis recurrence: an evidence-based case report

    Get PDF
    Background: a patient with a history of tuberculosis (TB) has a risk up to 27% to develop recurrence within 2 years after being cured. Indonesia itself has more than 7,500 recurrent cases annually, regardless of reinfection or relapse. This is an important problem, as recurrent TB is associated with lower cure rates with the anti-TB therapy and higher risk of developing drug resistance. Some risk factors for this recurrence are smoking, poor treatment adherence, low economic status, and weak immune status. This study is aimed to identify whether the use of fixed-dose combination (FDC) anti-tuberculosis therapy increases the risk for tuberculosis recurrence compared with using separate drug formulation. Methods: the search was conducted on MEDLINE, ProQuest, EBSCO, ScienceDirect, and Cochrane according to clinical question. The studies were selected based on inclusion and exclusion criteria and led to five useful articles. The selected studies were critically appraised for their validity, importance, and applicability. Results: five cohort studies were found with comparable validity. Only 1 study has accurate relative risk (RR) with 3.97 (1.14 – 13.80) and number needed to harm of 18. Other four studies fulfilled the applicability criteria for our case. Conclusion: the use of FDC anti-tuberculosis therapy increases the risk for tuberculosis recurrence compared with using separate drug formulation

    Cross-Well Radar I: Experimental Simulation of Cross-Well Tomography and Validation

    Get PDF
    This paper explains and evaluates the potential and limitations of conducting Cross-Well Radar (CWR) in sandy soils. Implementing the experiment and data collection in the absence of any scattering object, and in the presence of an acrylic plate (a representative of dielectric objects, such as DNAPL (dense non-aqueous phase liquid) pools, etc.), as a contrasting object in a water-saturated soil is also studied. To be able to image the signature of any object, more than one pair of receiving and transmitting antennas are required. The paper describes a method to achieve repeatable, reliable, and reproducible laboratory results for different transmitter-receiver combinations. Different practical methods were evaluated for collecting multiple-depth data. Similarity of the corresponding results and problems involved in each method are studied and presented. The data show that the frequency response of a saturated coarse-grained soil is smooth due to the continuous and dominant nature of water in saturated soils. The repeatability and potential symmetry of patterns across some borehole axes provide a valuable tool for validation of experimental results. The potential asymmetry across other borehole axes is used as a tool to evaluate the strength of the perturbation on the electromagnetic field due to hidden objects and to evaluate the feasibility of detecting dielectric objects (such as DNAPL pools, etc.) using CWR. The experimental simulation designed for this paper models a real-life problem in a smaller scale, in a controlled laboratory environment, and within homogenous soils uniformly dry or fully water-saturated, with a uniform dielectric property contrast between the inclusion and background. The soil in the field will not be as homogenous and uniform. The scaling process takes into consideration that as the size is scaled down; the frequency needs to be scaled up. It is noteworthy that this scaling process needs to be extensively studied and validated for future extension of the models to real field applications. For example, to extend the outcome of this work to the real field, the geometry (antennas size, their separation and inclusion size) needs to be scaled up back to the field size, while soil grains will not scale up. Therefore, soil, water and air coupling effects and interactions observed at the laboratory scale do not scale up in the field, and may have different unforeseen effects that require extensive study

    Emergence of biaxial nematic phases in solutions of semiflexible dimers.

    No full text
    We investigate the isotropic, uniaxial nematic and biaxial nematic phases, and the transitions between them, for a model lyotropic mixture of flexible molecules consisting of two rigid rods connected by a spacer with variable bending stiffness. We apply density-functional theory within the Onsager approximation to describe strictly excluded-volume interactions in this athermal model and to self-consistently find the orientational order parameters dictated by its complex symmetry, as functions of the density. Earlier work on lyotropic ordering of rigid bent-rod molecules is reproduced and extended to show explicitly the continuous phase transition at the Landau point, at a critical bend angle of 36^{∘}. For flexible dimers with no intrinsic biaxiality, we find that a biaxial nematic phase can nevertheless form at a sufficiently high density and low bending stiffness. For bending stiffness κ>0.86k_{B}T, this biaxial phase manifests as dimer bending fluctuations occurring preferentially in one plane. When the dimers are more flexible, κ<0.86k_{B}T, the modal shape of the fluctuating dimer is a V with an acute opening angle, and one of the biaxial order parameters changes sign, indicating a rotation of the directors. These two regions are separated by a narrow strip of uniaxial nematic in the phase diagram, which we generate in terms of the spacer stiffness and particle density

    Electromagnetic Waves in Contaminated Soils

    Get PDF
    Soil is a complex, potentially heterogeneous, lossy, and dispersive medium. Modeling the propagation and scattering of electromagnetic (EM) waves in soil is, hence, more challenging than in air or in other less complex media. This chapter will explain fundamentals of the numerical modeling of EM wave propagation and scattering in soil through solving Maxwell’s equations using a finite difference time domain (FDTD) method. The chapter will explain how: (i) the lossy and dispersive soil medium (in both dry and fully water-saturated conditions), (ii) a fourth phase (anomaly), (iii) two different types of transmitting antennae (a monopole and a dipole), and (iv) required absorbing boundary conditions can numerically be modeled. This is described through two examples that simulate the detection of DNAPL (dense nonaqueous-phase liquid) contamination in soil using Cross-well radar (CWR). CWR —otherwise known as cross-borehole GPR (ground penetrating radar)—modality was selected to eliminate the need for simulation of the roughness of the soil-air interface. The two examples demonstrate the scattering effect of a dielectric anomaly (representing a DNAPL pool) on the EM wave propagation through soil. The objective behind selecting these two examples is twofold: (i) explanation of the details and challenges of numerical modeling of EM wave propagation and scattering through soil for an actual problem (in this case, DNAPL detection), and (ii) demonstration of the feasibility of using EM waves for this actual detection problem
    • …
    corecore