192 research outputs found

    Recent results from the G(0) experiment

    Get PDF
    We have measured parity violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at backward electron angle. These measurements have been done at two momentum transfers : Q(2) = 0.22 and 0.63 (GeV/c)(2). Together with our previous forward angle measurement [1], we can extract strange quark contributions to the electromagnetic form factors of the nucleon, as well as nucleon axial form factor coming from the neutral weak interaction. The results indicate a strange quark magnetic contribution close to zero at these Q(2), and a possible non zero strange quark electric contribution for the high Q(2). The first Q(2) behavior measurement of the nucleon axial form factor in elastic electron scattering shows a good agreement with radiative corrections calculated at Q(2) = 0 and with a dipole form using the axial mass determined in neutrino scattering

    Measurement of the Parity-Violating Asymmetry in Inclusive Electroproduction of pi(-) near the Delta(0) Resonance

    Get PDF
    The parity-violating (PV) asymmetry of inclusive pi(-) production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasifree photoproduction off the neutron via the Delta(0) resonance. In the context of heavy-baryon chiral perturbation theory, this asymmetry is related to a low-energy constant d(Delta)(-) that characterizes the parity-violating gamma N Delta coupling. Zhu et al. calculated d(Delta)(-) in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from A(gamma)(-) = -5.2 to + 5.2 ppm. The measurement performed in this work leads to A(gamma)(-) = -0.36 +/- 1.06 +/- 0.37 +/- 0.03 ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to V-ud/V-us. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N - Delta axial transition form factors using PV electron scattering

    Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes

    Full text link
    The cross section of hard semi-exclusive A(e,eN)(A1)A(e,e'N)(A-1) reactions for fixed missing energy and momentum is calculated within the eikonal approximation. Relativistic dynamics and kinematics of high energy processes are unambiguously accounted for by using the analysis of appropriate Feynman diagrams. A significant dependence of the final state interactions on the missing energy is found, which is important for interpretation of forthcoming color transparency experiments. A new, more stringent kinematic restriction on the region where the contribution of short-range nucleon correlations is enhanced in semi-exclusive knock-out processes is derived. It is also demonstrated that the use of light-cone variables leads to a considerable simplification of the description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and psfig.sty. Revisied version to appear in Phys. Rev.

    On contribution of three-body forces to NdNd interaction at intermediate energies

    Get PDF
    Available data on large-angle nucleon-deuteron elastic scattering NddNNd\to dN below the pion threshold give a signal for three-body forces. There is a problem of separation of possible subtle aspects of these forces from off-shell effects in two-nucleon potentials. By considering the main mechanisms of the process, we show qualitatively that in the quasi-binary reaction N+d(NN)+NN+d\to (NN)+N with the final spin singlet NN-pair in the S-state the relative contribution of the 3N forces differs substantially from the elastic channel. It gives a new testing ground for the problem in question.Comment: 9 pages, Latex, 3 Postscript figure

    G0^0 Electronics and Data Acquisition (Forward-Angle Measurements)

    Get PDF
    The G0^0 parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for ep\vec{e}p elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G0^0 experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G0^0 forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section A. It has been written with Latex using \documentclass{elsart}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In Press (2007

    Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

    Full text link
    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A_\perp, at two Q2^2 values of \qsquaredaveragedlow (GeV/c)2^2 and \qsquaredaveragedhighII (GeV/c)2^2 and a scattering angle of 30<θe<4030^\circ < \theta_e < 40^\circ. The measured transverse asymmetries are A_{\perp}(Q2^2 = \qsquaredaveragedlow (GeV/c)2^2) = (\experimentalasymmetry alulowcorr ±\pm \statisticalerrorlowstat_{\rm stat} ±\pm \combinedsyspolerrorlowalucorsys_{\rm sys}) ×\times 106^{-6} and A_{\perp}(Q2^2 = \qsquaredaveragedhighII (GeV/c)2^2) = (\experimentalasymme tryaluhighcorr ±\pm \statisticalerrorhighstat_{\rm stat} ±\pm \combinedsyspolerrorhighalucorsys_{\rm sys}) ×\times 106^{-6}. The first errors denotes the statistical error and the second the systematic uncertainties. A_\perp arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A_\perp we conclude that π\piN-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.

    Phenomenology of the Deuteron Electromagnetic Form Factors

    Full text link
    A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in Table

    Evidence for Strange Quark Contributions to the Nucleon's Form Factors at Q2Q^2 = 0.108 (GeV/c)2^2

    Full text link
    We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q2Q^2 = \Qsquare (GeV/c)2^2 and at a forward electron scattering angle of 30<θe<40^\circ < \theta_e < 40^\circ. The measured asymmetry is ALR(ep)A_{LR}(\vec{e}p) = (\Aphys ±\pm \Deltastatstat_{stat} ±\pm \Deltasystsyst_{syst}) ×\times 106^{-6}. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A0_0 = (\Azero ±\pm \DeltaAzero) ×\times 106^{-6}. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2Q^2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be GEsG_E^s + \FakGMs GMsG_M^s = \GEsGMs ±\pm \DeltaGEsGMs at Q2Q^2 = \Qsquare (GeV/c)2^2. As in our previous measurement at higher momentum transfer for GEsG_E^s + 0.230 GMsG_M^s, we again find the value for GEsG_E^s + \FakGMs GMsG_M^s to be positive, this time at an improved significance level of 2 σ\sigma.Comment: 4 pages, 3 figure

    Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten

    Reaction mechanism and characteristics of T_{20} in d + ^3He backward elastic scattering at intermediate energies

    Get PDF
    For backward elastic scattering of deuterons by ^3He, cross sections \sigma and tensor analyzing power T_{20} are measured at E_d=140-270 MeV. The data are analyzed by the PWIA and by the general formula which includes virtual excitations of other channels, with the assumption of the proton transfer from ^3He to the deuteron. Using ^3He wave functions calculated by the Faddeev equation, the PWIA describes global features of the experimental data, while the virtual excitation effects are important for quantitative fits to the T_{20} data. Theoretical predictions on T_{20}, K_y^y (polarization transfer coefficient) and C_{yy} (spin correlation coefficient) are provided up to GeV energies.Comment: REVTEX+epsfig, 17 pages including 6 eps figs, to be published in Phys. Rev.
    corecore