5 research outputs found

    Isolation of the right subclavian artery in a patient with d-transposition of the great arteries

    No full text
    Isolation of the right subclavian artery (RSCA) is rare, and this finding in association with d-transposition of the great arteries (d-TGA) is extremely unusual. We present a case of an isolated RSCA in a newborn with d-TGA in whom the clinical presentation was diagnostic. We discuss the imaging modalities used to confirm the diagnosis, the embryological basis of the finding, and the surgical repair

    Chronic antepartum maternal hyperoxygenation in a case of severe fetal Ebstein's anomaly with circular shunt physiology

    No full text
    Perinatal mortality remains high among fetuses diagnosed with Ebstein's anomaly of the tricuspid valve. The subgroup of patients with pulmonary valve regurgitation is at particularly high risk. In the setting of pulmonary valve regurgitation, early constriction of the ductus arteriosus may be a novel perinatal management strategy to reduce systemic steal resulting from circular shunt physiology. We report the use of chronic antepartum maternal oxygen therapy for constriction of the fetal ductus arteriosus and modulation of fetal pulmonary vascular resistance in a late presentation of Ebstein's anomaly with severe tricuspid valve regurgitation, reversal of flow in the ductus arteriosus, and continuous pulmonary valve regurgitation

    Elucidating tricuspid Doppler signal interpolation and its implication for assessing pulmonary hypertension

    No full text
    Doppler echocardiography plays a central role in the assessment of pulmonary hypertension (PAH). We aim to improve quality assessment of systolic pulmonary arterial pressure (SPAP) by applying a cubic polynomial interpolation to digitized tricuspid regurgitation (TR) waveforms. Patients with PAH and advanced lung disease were divided into three cohorts: a derivation cohort (n = 44), a validation cohort (n = 71), an outlier cohort (n = 26), and a non-PAH cohort (n = 44). We digitized TR waveforms and analyzed normalized duration, skewness, kurtosis, and first and second derivatives of pressure. Cubic polynomial interpolation was applied to three physiology-driven phases: the isovolumic phase, ejection phase, and “shoulder” point phase. Coefficients of determination and a Bland−Altman analysis was used to assess bias between methods. The cubic polynomial interpolation of the TR waveform correlated strongly with expert read right ventricular systolic pressure (RVSP) with R2 &gt; 0.910 in the validation cohort. The biases when compared to invasive SPAP measured within 24 h were 6.03 [4.33; 7.73], −2.94 [1.47; 4.41], and −3.11 [−4.52; −1.71] mmHg, for isovolumic, ejection, and shoulder point interpolations, respectively. In the outlier cohort with more than 30% difference between echocardiographic estimates and invasive SPAP, cubic polynomial interpolation significantly reduced underestimation of RVSP. Cubic polynomial interpolation of the TR waveform based on isovolumic or early ejection phase may improve RVSP estimates.QC 20230607</p
    corecore