480 research outputs found
Non-functional immunoglobulin G transcripts in a case of hyper-immunoglobulin M syndrome similar to type 4
86% of immunoglobulin G (IgG) heavy-chain gene transcripts were found to be non-functional in the peripheral blood B cells of a patient initially diagnosed with common variable immunodeficiency, who later developed raised IgM, whereas no non-functionally rearranged transcripts were found in the cells of seven healthy control subjects. All the patient's IgM heavy-chain and κ light-chain transcripts were functional, suggesting that either non-functional rearrangements were being selectively class-switched to IgG, or that receptor editing was rendering genes non-functional after class-switching. The functional γ-chain sequences showed a normal rate of somatic hypermutation while non-functional sequences contained few somatic mutations, suggesting that most came from cells that had no functional gene and therefore were not receiving signals for hypermutation. However, apoptosis of peripheral blood lymphocytes was not impaired. No defects have been found in any of the genes currently known to be responsible for hyper-IgM syndrome but the phenotype fits best to type 4
Inhibition of Immune Complex-Induced Inflammation by A small Molecular Weight Selectin Antagonist
The anti-inflammatory effect of a small molecular weight antagonist
of P- and E-selectin-dependent cell adhesion was examined. The
glycolipid sulphatide was shown to block the adherence of
thrombin-activated rat platelets to HL-60 cells. This interaction is
known to be dependent on P-selectin. The rat dermal reverse passive
Arthus reaction was used to assess the effect of sulphatide on a
neutrophil dependent inflammatory response. Sulphatide
dosedependently blocked both the vascular permeability increase and
cell infiltration after intraperitoneal administration. These
results show that a small molecular weight compound which blocks P-
and E-selectin dependent adhesion in vitro can
effectively block the inflammation due to immune complex deposition.
A compound with this type of profile may have therapeutic potential
in the treatment of immune complex mediated diseases
Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons
The hyaluronan (HA)-binding function (lectin function) of the leukocyte homing receptor, CD44, is tightly regulated. Herein we address possible mechanisms that regulate CD44 isoform-specific HA binding. Binding studies with melanoma transfectants expressing CD44H, CD44E, or with soluble immunoglobulin fusions of CD44H and CD44E (CD44H-Rg, CD44E-Rg) showed that although both CD44 isoforms can bind HA, CD44H binds HA more efficiently than CD44E. Using CD44-Rg fusion proteins we show that the variably spliced exons in CD44E, V8-V10, specifically reduce the lectin function of CD44, while replacement of V8-V10 by an ICAM-1 immunoglobulin domain restores binding to a level comparable to that of CD44H. Conversely, CD44 bound HA very weakly when exons V8-V10 were replaced with a CD34 mucin domain, which is heavily modified by O-linked glycans. Production of CD44E-Rg or incubation of CD44E-expressing transfectants in the presence of an O-linked glycosylation inhibitor restored HA binding to CD44H-Rg and to cell surface CD44H levels, respectively. We conclude that differential splicing provides a regulatory mechanism for CD44 lectin function and that this effect is due in part to O-linked carbohydrate moieties which are added to the Ser/Thr rich regions encoded by the variably spliced CD44 exons. Alternative splicing resulting in changes in protein glycosylation provide a novel mechanism for the regulation of lectin activit
Genotoxicity Response of Fibroblast Cells and Human Epithelial Adenocarcinoma In Vitro Model Exposed to Bare and Ozone-Treated Silica Microparticles
Indoor air pollutants (IAP), which can pose a serious risk to human health, include biological pollutants, nitric oxide (NO), nitrogen dioxide (NO2 ), volatile organic compounds (VOC), sulfur dioxide (SO2 ), carbon monoxide (CO), carbon dioxide (CO2 ), silica, metals, radon, and particulate matter (PM). The aim of our work is to conduct a multidisciplinary study of fine silica particles (<2.5 µm) in the presence or absence of ozone (O3 ), and evaluate their potential cytotoxicity using MTS, micronucleus, and the comet test in two cell lines. We analyzed A549 (human basal alveolar epithelial cell adenocarcinoma) and Hs27 (human normal fibroblasts) exposed to dynamic conditions by an IRC simulator under ozone flow (120 ppb) and in the presence of silica particles (40 µg/h). The viability of A549 and Hs27 cells at 48 and 72 h of exposure to silica or silica/ozone decreases, except at 72 h in Hs27 treated with silica/ozone. The micronucleus and comet tests showed a significant increase in the number of micronuclei and the % of DNA in the queue, compared to the control, in both lines in all treatments, even if in different cell times/types. We found that silica alone or with more O3 causes more pronounced genotoxic effects in A549 tumor cells than in normal Hs27 fibroblasts
CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis
We investigated the role of CD40-CD40 ligand (CD40L) interactions in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). Activated helper T cells expressing CD40L (gp39) surface protein were found in MS patient brain sections, but not in brain tissue sections of normal controls or patients with other neurological diseases. CD40L-positive cells were co-localized with CD40-bearing cells in active lesions (perivascular infiltrates). Most of these CD40 bearing cells proved to be of the monocytic lineage (macrophages or microglial cells), and relatively few were B cells. To functionally evaluate CD40-CD40L interactions, EAE was elicited in mice by means of proteolipid-peptide immunization. Treatment with anti-CD40L monoclonal antibody completely prevented the development of disease. Furthermore, administration of anti-CD40L monoclonal antibody, even after disease onset, shortly before maximum disability score was reached led to dramatic disease reduction. The presence of helper T cells expressing CD40L in brain tissue of MS patients and EAE animals, together with the functional evidence provided by successful experimental prevention and therapy in an animal model, indicates that blockade of CD40-CD40L-mediated cellular interactions may be a method for interference in active MS
- …