6 research outputs found

    Clinical and genetic heterogeneity in benign hereditary chorea.

    No full text
    Item does not contain fulltextBACKGROUND: Benign hereditary chorea (BHC) is an autosomal dominant disorder that can be distinguished from Huntington disease by its early onset, stable or only slightly progressive course, and absence of mental deterioration. The variation in clinical features is such that its very existence has been doubted. The authors recently described the localization of a gene responsible for BHC on chromosome 14q in a large Dutch family. OBJECTIVE: To report results of extensive clinical and linkage analyses for this Dutch family and six other families with BHC. RESULTS: Three of the seven families had linkage to a region on chromosome 14q13.1-q21.1. HOMOG analysis showed odds of 10 x 10(11) in favor of locus heterogeneity. Haplotype analyses for the linked families resulted in a reduction of the critical interval for the BHC gene to 8.4 cM between marker D14S49 and marker D14S278. Clinically, these three families had a homogeneous picture with early-onset chorea, sometimes accompanied by slight ataxia in walking, but without dystonia, myoclonic jerks, or dysarthria. The severity of the choreatic movements tended to abate in adolescence or early adulthood. In the unlinked families, symptoms and signs were more heterogeneous as to age at onset and the occurrence of myoclonic jerks or dystonia. CONCLUSIONS: BHC is a clinically and genetically heterogeneous disorder, with one well-defined clinical syndrome mapping to chromosome 14q

    Massively parallel sequencing of ataxia genes after array-based enrichment.

    No full text
    Contains fulltext : 87530.pdf (publisher's version ) (Closed access)Massively parallel sequencing has tremendous diagnostic potential but requires enriched templates for sequencing. Here we report the validation of an array-based sequence capture method in genetically heterogeneous disorders. The model disorder selected was AR ataxia, using five subjects with known mutations and two unaffected controls. The genomic sequences of seven disease genes, together with two control loci were targeted on a 2-Mb sequence-capture array. After enrichment, the patients' DNA samples were analyzed using one-quarter Roche GS FLX Titanium sequencing run, resulting in an average of 65 Mb of sequence data per patient. This was sufficient for an average 25-fold coverage/base in all targeted regions. Enrichment showed high specificity; on average, 80% of uniquely mapped reads were on target. Importantly, this approach enabled automated detection of deletions and hetero- and homozygous point mutations for 6/7 mutant alleles, and greater than 99% accuracy for known SNP variants. Our results also clearly show reduced coverage for sequences in repeat-rich regions, which significantly impacts the reliable detection of genomic variants. Based on these findings we recommend a minimal coverage of 15-fold for diagnostic implementation of this technology. We conclude that massive parallel sequencing of enriched samples enables personalized diagnosis of heterogeneous genetic disorders and qualifies for rapid diagnostic implementation.01 april 201

    Mutations in TITF-1 are associated with benign hereditary chorea.

    No full text
    Item does not contain fulltextBenign hereditary chorea (BHC) (MIM 118700) is an autosomal dominant movement disorder. The early onset of symptoms (usually before the age of 5 years) and the observation that in some BHC families the symptoms tend to decrease in adulthood suggests that the disorder results from a developmental disturbance of the brain. In contrast to Huntington disease (MIM 143100), BHC is non-progressive and patients have normal or slightly below normal intelligence. There is considerable inter- and intrafamilial variability, including dysarthria, axial dystonia and gait disturbances. Previously, we identified a locus for BHC on chromosome 14 and subsequently identified additional independent families linked to the same locus. Recombination analysis of all chromosome 14-linked families resulted initially in a reduction of the critical interval for the BHC gene to 8.4 cM between markers D14S49 and D14S278. More detailed analysis of the critical region in a small BHC family revealed a de novo deletion of 1.2 Mb harboring the TITF-1 gene, a homeodomain-containing transcription factor essential for the organogenesis of the lung, thyroid and the basal ganglia. Here we report evidence that mutations in TITF-1 are associated with BHC
    corecore