26 research outputs found

    Transgenerational and intergenerational effects of early childhood famine exposure in the cohort of offspring of Leningrad Siege survivors

    Get PDF
    Famine exposure during early life development can affect disease risk in late-life period, yet, transmission of phenotypic features from famine-exposed individuals to the next generations has not been well characterized. The purpose of our case–control study was to investigate the association of parental starvation in the perinatal period and the period of early childhood with the phenotypic features observed in two generations of descendants of Leningrad siege survivors. We examined 54 children and 30 grandchildren of 58 besieged Leningrad residents who suffered from starvation in early childhood and prenatal age during the Second World War. Controls from the population-based national epidemiological ESSE-RF study (n = 175) were matched on sex, age and body mass index (BMI). Phenotypes of controls and descendants (both generations, children and grandchildren separately) were compared, taking into account multiple testing. Comparison of two generations descendants with corresponding control groups revealed significantly higher creatinine and lower glomerular filtration rate (GFR), both in meta-analysis and in independent analyses. The mean values of GFR for all groups were within the normal range (GFR less than 60 mL/min/1.73 m2 was recorded in 2 controls and no one in DLSS). Additionally, independent of the creatinine level, differences in the eating pattern were detected: insufficient fish and excessive red meat consumption were significantly more frequent in the children of the Leningrad siege survivors compared with controls. Blood pressure, blood lipids and glucose did not differ between the groups. Parental famine exposure in early childhood may contribute to a decrease in kidney filtration capacity and altered eating pattern in the offspring of famine-exposed individuals.</p

    A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes

    Case Report : Supernormal Vascular Aging in Leningrad Siege Survivors

    Get PDF
    Age-related changes in the vascular system play an important role in the biological age and lifespan of a person and maybe affected from an early age onward. One of the indicators of changes in the vascular system is arterial wall stiffness and its main measure, i.e., carotid-femoral pulse wave velocity (cfPWV). We examined arterial wall stiffness in a sample of 305 Leningrad Siege survivors to assess how hunger and stressful conditions during fetal development and early childhood affected the state of the cardiovascular system at a later age and what factors may neutralize the negative impact sustained in early childhood. Here, we presented an evaluation of two unique patients with supernormal vascular aging (SUPERNOVA) phenotype from this cohort and described the details of congruence between hereditary resistance and practiced lifestyle yielding slower biological aging rate.Peer reviewe

    The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia

    Get PDF
    How the 22q11.2 deletion predisposes to psychiatric disease is unclear. Here, the authors examine living human neuronal cells and show that 22q11.2 regulates the expression of genes linked to autism during early development, and genes linked to schizophrenia and synaptic biology in neurons. It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.Peer reviewe

    Mendelian Randomization Analysis reveals Inverse Genetic Risks between Skin Cancers and Vitiligo

    No full text
    Several observational studies have demonstrated a consistent pattern of decreased melanoma risk among patients with vitiligo. More recently, this finding has been supported by a suggested genetic relationship between the two entities, with certain variants significantly associated with an increased risk of melanoma, basal cell carcinoma, and squamous cell carcinoma but a decreased risk of vitiligo. We compared 48 associated variants from a recently published GWAS and identified three variants—located in the TYR, MC1R-DEF8, and RALY-EIF2S2-ASIP-AHCY-ITCH loci— that correlated with an increased risk for melanoma, basal cell carcinoma, and squamous cell carcinoma and a decreased risk for vitiligo. We then used results of skin cancers and vitiligo GWAS to compare the shared genetic properties between these two traits through an unbiased Mendelian randomization analysis. Our results suggest that the inverse genetic relationship between common skin cancers and vitiligo is broader than previously reported owing to the influence of shared genome-wide significant associations

    Genotype imputation and polygenic score estimation in northwestern Russian population

    Get PDF
    Numerous studies demonstrated the lack of transferability of polygenic score (PGS) models across populations and the problem arising from unequal presentation of ancestries across genetic studies. However, even within European ancestry there are ethnic groups that are rarely presented in genetic studies. For instance, Russians, being one of the largest, diverse, and yet understudied group in Europe. In this study, we evaluated the reliability of genotype imputation for the Russian cohort by testing several commonly used imputation reference panels (e.g. HRC, 1000G, HGDP). HRC, in comparison with two other panels, showed the most accurate results based on both imputation accuracy and allele frequency concordance between masked and imputed genotypes. We built polygenic score models based on GWAS results from the UK biobank, measured the explained phenotypic variance in the Russian cohort attributed to polygenic scores for 11 phenotypes, collected in the clinic for each participant, and finally explored the role of allele frequency discordance between the UK biobank and the study cohort in the resulting PGS performance

    Assessment of genetic variant burden in epilepsy-associated brain lesions

    No full text
    It is challenging to estimate genetic variant burden across different subtypes of epilepsy. Herein, we used a comparative approach to assess the genetic variant burden and genotype-phenotype correlations in four most common brain lesions in patients with drug-resistant focal epilepsy. Targeted sequencing analysis was performed for a panel of 161 genes with a mean coverage of >400x. Lesional tissue was histopathologically reviewed and dissected from hippocampal sclerosis (n = 15), ganglioglioma (n = 16), dysembryoplastic neuroepithelial tumors (n = 8), and focal cortical dysplasia type II (n = 15). Peripheral blood (n = 12) or surgical tissue samples histopathologically classified as lesion-free (n = 42) were available for comparison. Variants were classified as pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics guidelines. Overall, we identified pathogenic and likely pathogenic variants in 25.9% of patients with a mean coverage of 383x. The highest number of pathogenic/likely pathogenic variants was observed in patients with ganglioglioma (43.75%; all somatic) and dysembryoplastic neuroepithelial tumors (37.5%; all somatic), and in 20% of cases with focal cortical dysplasia type II (13.33% somatic, 6.67% germline). Pathogenic/likely pathogenic positive genes were disorder specific and BRAF V600E the only recurrent pathogenic variant. This study represents a reference for the genetic variant burden across the four most common lesion entities in patients with drug-resistant focal epilepsy. The observed large variability in variant burden by epileptic lesion type calls for whole exome sequencing of histopathologically well-characterized tissue in a diagnostic setting and in research to discover novel disease-associated genes
    corecore