247 research outputs found

    Simple and Low Cost 10 Gb/s Coherent Transmission for Long Reach PON

    Get PDF
    131 km transmission (typical LR-PON distance) at 10Gb/s over G.652 fiber is demonstrated exploiting a direct modulated (DM) DFB laser, coherent receiver and electrical filtering obtaining an innovative chirp managed approach. No dispersion compensation (optical or DSP) is exploited

    Ultra-Dense WDM-PON 6.25 GHz spaced 8x1 Gb/s based on a simplified coherent-detection scheme

    Get PDF
    We demonstrate experimentally a novel type of coherent low cost Gigabit-to-the-User Ultra-Dense-Wavelength Division Multiplexing (UD-WDM) PON, featuring 6.25 GHz channel spacing and long reach. Polarization-independent coherent detection is achieved by exploiting a novel scheme which requires only a 3×3 coupler, three photodiodes, basic analogue processing and a common DFB as local oscillator (LO). This avoids the conventional polarization diversity approach. The DFB LO is free running, i.e. not locked in frequency, and is tuned to detect any of the eight channels by simply changing its temperature in a range of 2° C. We achieve 70 km long-reach transmission plus 30 dB attenuation, for a total of > 45 dB optical distribution network loss. This indicates that this solution could be effectively exploited to overlay existing PON infrastructures by UD-WDM

    Simple and effective solutions for low-cost coherent WDM-PON

    Get PDF
    This paper presents the most significant results achieved in the last two years by our group in coherent ultra-dense-WDM PON for λ-to-the-user access. Here we mostly focus on the architectures based on simple OOK-NRZ modulation format. We demonstrated the real-time implementation of our coherent receiver and we proved its compatibility with direct modulated laser (DML). Receiver sensitivities as low as -48 dBm at BER=1·10-3 for 1.25 Gb/s has been observed, showing the feasibility of a coherent ONU receiver based on devices commonly available and with limited cost. The system support quite high ODN losses and allows the λ-to-the-user approach

    Coherent PON system with high-sensitivity polarization-independent receiver and no ADC/DSP

    Get PDF
    A 1.25 Gb/s ASK PON system with -51dBm sensitivity (at BER=2-103) is enabled by a polarization-independent coherent receiver that needs no DSP (nor ADC). The system just uses common DFBs and commercial electronic devices and has 52 dB dynamic range

    Field-Trial of a high-budget, filterless, lambda-to-the-user, UDWDM-PON enabled by an innovative class of low-cost coherent transceivers

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We experimentally demonstrate an innovative ultradense wavelength division multiplexing (UDWDM) passive optical networks (PON) that implements the full ¿-to-the-user concept in a filterless distribution network. Key element of the proposed system is a novel class of coherent transceivers, purposely developed with a nonconventional technical approach. Indeed, they are designed and realized to avoid D/A-A/D converter stages and digital signal processing in favor of simple analog processing so that they match system, cost, and power consumption requirements of the access networks without sacrificing the overall performance. These coherent transceivers target different use case scenarios (residential, business, fixed, wireless) still keeping perfect compatibility and co-existence with legacy infrastructures installed to support gray, time division multiplexed PON systems. Moreover, the availability of coherent transceivers of different cost/performance ratios allows for deployments of different quality service grades. In this paper, we report the successful field trial of the proposed systems in a testbed where 14 UDWDM channels (and one legacy E-PON system) are transmitted simultaneously in a dark-fiber network deployed in the city of Pisa (Italy), delivering real-time and/or test traffic. The trial demonstrated filterless operations (each remote node selects individually its own UDWDM channel on a fine 6.25-GHz grid), real-time GbE transmissions (by using either fully analog or light digital signal processing), multirate transmission (1.25 and 10 Gb/s), high optical distribution network loss (18-40 dB) as well as a bidirectional channel monitoring system.Peer ReviewedPostprint (author's final draft

    Hitless wavelength assignment in filterless optical access networks

    Get PDF
    Advantages offered by coherent detection systems in access networks are not limited to the increase of power budget due to the superior sensitivity. Channel selectivity is another intriguing feature offered by coherent systems that can be exploited to enable advanced system and network functionalities for access systems. Among them, we focus here on the implementation of filterless optical networks and network reconfiguration capabilities which might be required to satisfy dynamic load balancing requests and new terminal activations. We show that in the access domain these functionalities do not require DSP-aided coherent receivers, but can be easily realized by means of simpler, fully analogue real-time coherent terminals matching the access network low-cost paradigm. This paper discusses these concepts and how they can be experimentally implemented by using a novel wavelength allocation algorithm and real-time analogue coherent transceivers based on DFB lasers, whose wavelengths are tuned by a simple temperature control

    Endlessly adiabatic fibre

    Get PDF
    • …
    corecore