690 research outputs found

    Thermophysical study of 2-acetylthiophene: experimental and modelled results

    Get PDF
    Several thermophysical properties have been studied for 2-acetylthiophene: (i) vapour pressure was determined at temperatures within 336.16–445.02 K; (ii) density, speed of sound, static permittivity, refractive index, surface tension, and kinematic viscosity were measured at p = 0.1 MPa and at temperatures from 278.15 K (or 283.15 K for the refractive index) to 338.15 K; (iii) volumetric properties were also determined at temperatures in the (283.15–338.15) K range and at pressures up to 65.0 MPa. From these experimental values, different derivative properties have been calculated such as enthalpy of vaporization, isobaric expansibility, isothermal and isentropic compressibility, dipole moment, entropy and enthalpy of surface formation, and dynamic viscosity. All experimental properties were correlated and the results were explained through the intermolecular interactions. Moreover PC-SAFT EoS was used to model the thermodynamic behaviour of the compound. Finally, this EoS combined with the Density Gradient Theory allowed obtaining the influence parameter for the surface tension of 2-acetylthiophene

    Cyrhetrenylaniline and new organometallic phenylimines derived from 4- and 5-nitrothiophene: Synthesis, characterization, X-Ray structures, electrochemistry and in vitro anti-T. brucei activity

    Get PDF
    A novel series of cyrhetrenyl (3a-4a) and ferrocenyl (3b-4b) Schiff bases were synthesized through a condensation reaction, between the known 4-ferrocenylaniline (2b) or the unreported 4-cyhretrenylaniline (2a) with 4- or 5-nitrothiophenecarboxaldehyde. The structure of 2a and the new Schiff bases have been elucidated using conventional spectroscopic techniques (FT-IR, 1H and 13C NMR), mass spectrometry, and single-crystal X-ray diffraction analysis of compounds 2a, 4a and 3b. Cyclic voltammetry of organometallic phenylimines derived from 5-nitrothiophene showed NO2 group reduction potentials (E1/2z 0.575 V) that were more anodic than those registered for their 4-nitro analogues (E1/2z 0.981 V). All organometallic imines were tested against the bloodstream form of Trypanosoma brucei. Evaluation indicated that the most active complexes are the 5-nitrothiophene derivatives, 4a, which were remarkably more active than nifurtimox. In addition, complex 4b resulted in less toxicity to host L6 cells than nifurtimox. The results revealed that the electronic effects of cyrhetrene and ferrocene are not an influential factor in E1/2 and anti-Trypanosoma brucei activity for these new imines, which is probably due to the non-coplanarity of the [(h5-C5H4)-C6H4-N=CH-(C4H2S)] system

    Soliton Interactions in Perturbed Nonlinear Schroedinger Equations

    Full text link
    We use multiscale perturbation theory in conjunction with the inverse scattering transform to study the interaction of a number of solitons of the cubic nonlinear Schroedinger equation under the influence of a small correction to the nonlinear potential. We assume that the solitons are all moving with the same velocity at the initial instant; this maximizes the effect each soliton has on the others as a consequence of the perturbation. Over the long time scales that we consider, the amplitudes of the solitons remain fixed, while their center of mass coordinates obey Newton's equations with a force law for which we present an integral formula. For the interaction of two solitons with a quintic perturbation term we present more details since symmetries -- one related to the form of the perturbation and one related to the small number of particles involved -- allow the problem to be reduced to a one-dimensional one with a single parameter, an effective mass. The main results include calculations of the binding energy and oscillation frequency of nearby solitons in the stable case when the perturbation is an attractive correction to the potential and of the asymptotic "ejection" velocity in the unstable case. Numerical experiments illustrate the accuracy of the perturbative calculations and indicate their range of validity.Comment: 28 pages, 7 figures, Submitted to Phys Rev E Revised: 21 pages, 6 figures, To appear in Phys Rev E (many displayed equations moved inline to shorten manuscript

    Quantum entanglement in photosynthetic light harvesting complexes

    Full text link
    Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.Comment: 14 pages, 7 figures. Improved presentation, published versio

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    Genetic Architecture of ADHD and Overlap With Other Psychiatric Disorders And Cognition-Related Phenotypes

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.</p

    Genetic Architecture of ADHD and Overlap With Other Psychiatric Disorders And Cognition-Related Phenotypes

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.</p

    Genetic Architecture of ADHD and Overlap With Other Psychiatric Disorders And Cognition-Related Phenotypes

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.</p

    Genetic Architecture of ADHD and Overlap With Other Psychiatric Disorders And Cognition-Related Phenotypes

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.</p

    Genetic Architecture of ADHD and Overlap With Other Psychiatric Disorders And Cognition-Related Phenotypes

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.</p
    • …
    corecore