670 research outputs found

    Industrial Unrest in Canada: A Diagnosis of Recent Experience

    Get PDF
    To diagnose the recent wave of industrial unrest in Canada, it is first of all necessary to indentify its characteristics. The two major dimensions of this phenomenon concern the source of union militancy and its illegal manifestations

    Decoherence in a double-slit quantum eraser

    Full text link
    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down conversion process, is prepared in a maximally entangled polarization state. A birefringent double-slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled not gate that couples the polarization with the transversal momentum of these photons. The other photon, that acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wave-like to particle-like behavior of the signal photons crossing the double-slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.Comment: Accepted in Physical Review

    Simultaneous minimum-uncertainty measurement of discrete-valued complementary observables

    Full text link
    We have made the first experimental demonstration of the simultaneous minimum uncertainty product between two complementary observables for a two-state system (a qubit). A partially entangled two-photon state was used to perform such measurements. Each of the photons carries (partial) information of the initial state thus leaving a room for measurements of two complementary observables on every member in an ensemble.Comment: 4 pages, 4 figures, REVTeX, submitted to PR

    The modern tools of quantum mechanics (A tutorial on quantum states, measurements, and operations)

    Full text link
    This tutorial is devoted to review the modern tools of quantum mechanics, which are suitable to describe states, measurements, and operations of realistic, not isolated, systems in interaction with their environment, and with any kind of measuring and processing devices. We underline the central role of the Born rule and and illustrate how the notion of density operator naturally emerges, together the concept of purification of a mixed state. In reexamining the postulates of standard quantum measurement theory, we investigate how they may formally generalized, going beyond the description in terms of selfadjoint operators and projective measurements, and how this leads to the introduction of generalized measurements, probability operator-valued measures (POVM) and detection operators. We then state and prove the Naimark theorem, which elucidates the connections between generalized and standard measurements and illustrates how a generalized measurement may be physically implemented. The "impossibility" of a joint measurement of two non commuting observables is revisited and its canonical implementations as a generalized measurement is described in some details. Finally, we address the basic properties, usually captured by the request of unitarity, that a map transforming quantum states into quantum states should satisfy to be physically admissible, and introduce the notion of complete positivity (CP). We then state and prove the Stinespring/Kraus-Choi-Sudarshan dilation theorem and elucidate the connections between the CP-maps description of quantum operations, together with their operator-sum representation, and the customary unitary description of quantum evolution. We also address transposition as an example of positive map which is not completely positive, and provide some examples of generalized measurements and quantum operations.Comment: Tutorial. 26 pages, 1 figure. Published in a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Delta infection without increase in severity of hepatitis.

    Get PDF
    The findings of increased morbidity of HbsAG positive hepatitis with delta infection in a study by Dr. Smedile et al were contrary to those of studies performed by the authors. A group of 27 and a group of 41 drug abusers were examined serologically and had liver biopsies performed. There was no significant difference in histological findings between delta positive and delta negative patients in the 27 member group. None of the 41 member group showed any increase in severity of illness. Ethnic origin may be an important factor in the pathogenicity of the delta agent

    Approximate joint measurement of qubit observables through an Arthur-Kelly type model

    Full text link
    We consider joint measurement of two and three unsharp qubit observables through an Arthur-Kelly type joint measurement model for qubits. We investigate the effect of initial state of the detectors on the unsharpness of the measurement as well as the post-measurement state of the system. Particular emphasis is given on a physical understanding of the POVM to PVM transition in the model and entanglement between system and detectors.Two approaches for characterizing the unsharpness of the measurement and the resulting measurement uncertainty relations are considered.The corresponding measures of unsharpness are connected for the case where both the measurements are equally unsharp. The connection between the POVM elements and symmetries of the underlying Hamiltonian of the measurement interaction is made explicit and used to perform joint measurement in arbitrary directions. Finally in the case of three observables we derive a necessary condition for the approximate joint measurement and use it show the relative freedom available when the observables are non-orthogonal.Comment: 22 pages; Late

    Micro-CT yields high image quality in human fetal post-mortem imaging despite maceration

    Get PDF
    Background Current clinical post-mortem imaging techniques do not provide sufficiently high-resolution imaging for smaller fetuses after pregnancy loss. Post-mortem micro-CT is a non-invasive technique that can deliver high diagnostic accuracy for these smaller fetuses. The purpose of the study is to identify the main predictors of image quality for human fetal post-mortem micro-CT imaging. Methods Human fetuses were imaged using micro-CT following potassium tri-iodide tissue preparation, and axial head and chest views were assessed for image quality on a Likert scale by two blinded radiologists. Simple and multivariable linear regression models were performed with demographic details, iodination, tissue maceration score and imaging parameters as predictor variables. Results 258 fetuses were assessed, with median weight 41.7 g (2.6–350 g) and mean gestational age 16 weeks (11–24 weeks). A high image quality score (> 6.5) was achieved in 95% of micro-CT studies, higher for the head (median = 9) than chest (median = 8.5) imaging. The strongest negative predictors of image quality were increasing maceration and body weight (p < 0.001), with number of projections being the best positive imaging predictor. Conclusions High micro-CT image quality score is achievable following early pregnancy loss despite fetal maceration, particularly in smaller fetuses where conventional autopsy may be particularly challenging. These findings will help establish clinical micro-CT imaging services, addressing the need for less invasive fetal autopsy methods

    Joint measurements via quantum cloning

    Get PDF
    We explore the possibility of achieving optimal joint measurements of noncommuting observables on a single quantum system by performing conventional measurements of commuting self adjoint operators on optimal clones of the original quantum system. We consider the case of both finite dimensional and infinite dimensional Hilbert spaces. In the former we study the joint measurement of three orthogonal components of a spin 1/2, in the latter we consider the case of the joint measurements of any pair of noncommuting quadratures of one mode of the electromagnetic field. We show that universally covariant cloning is not ideal for joint measurements, and a suitable non universally covariant cloning is needed.Comment: 8 page

    Witnessing effective entanglement in a continuous variable prepare&measure setup and application to a QKD scheme using postselection

    Full text link
    We report an experimental demonstration of effective entanglement in a prepare&measure type of quantum key distribution protocol. Coherent polarization states and heterodyne measurement to characterize the transmitted quantum states are used, thus enabling us to reconstruct directly their Q-function. By evaluating the excess noise of the states, we experimentally demonstrate that they fulfill a non-separability criterion previously presented by Rigas et al. [J. Rigas, O. G\"uhne, N. L\"utkenhaus, Phys. Rev. A 73, 012341 (2006)]. For a restricted eavesdropping scenario we predict key rates using postselection of the heterodyne measurement results.Comment: 12 pages, 12 figures, 2 table

    Optimal estimation of joint parameters in phase space

    Get PDF
    We address the joint estimation of the two defining parameters of a displacement operation in phase space. In a measurement scheme based on a Gaussian probe field and two homodyne detectors, it is shown that both conjugated parameters can be measured below the standard quantum limit when the probe field is entangled. We derive the most informative Cram\'er-Rao bound, providing the theoretical benchmark on the estimation and observe that our scheme is nearly optimal for a wide parameter range characterizing the probe field. We discuss the role of the entanglement as well as the relation between our measurement strategy and the generalized uncertainty relations.Comment: 8 pages, 3 figures; v2: references added and sections added to the supplemental material; v3: minor changes (published version
    • …
    corecore