301 research outputs found

    Subharmonic gap structure in short ballistic graphene junctions

    Get PDF
    We present a theoretical analysis of the current-voltage characteristics of a ballistic superconductor-normal-superconductor (SNS) junction, in which a strip of graphene is coupled to two superconducting electrodes. We focus in the short-junction regime, where the length of the strip is much smaller than superconducting coherence length. We show that the differential conductance exhibits a very rich subharmonic gap structure which can be modulated by means of a gate voltage. On approaching the Dirac point the conductance normalized by the normal-state conductance is identical to that of a short diffusive SNS junction.Comment: revtex4, 4 pages, 4 figure

    On Effect of Equilibrium Fluctuations on Superfluid Density in Layered Superconductors

    Full text link
    We calculate suppression of inter- and intralayer superconducting currents due to equilibrium phase fluctuations and find that, in contrast to a recent prediction, the effect of thermal fluctuations cannot account for linear temperature dependence of the superfluid density in high-Tc superconductors at low temperatures. Quantum fluctuations are found to dominate over thermal fluctuations at low temperatures due to hardening of their spectrum caused by the Josephson plasma resonance. Near Tc sizeable thermal fluctuations are found to suppress the critical current in the stack direction stronger, than in the direction along the layers. Fluctuations of quasiparticle branch imbalance make the spectral density of voltage fluctuations at small frequencies non zero, in contrast to what may be expected from a naive interpretation of Nyquist formula.Comment: 5 pages, LaTeX, RevTeX, Submitted to PR

    Linear response and collective oscillations in superconductors with d-wave pairing

    Full text link
    Simple and physically transparent equations for the linear response of layered superconductors with d-wave symmetry of the order parameter are derived by means of the quasiclassic kinetic theory of superconductivity. Responses to solenoidal and potential electric fields have different frequency dependencies. The conductivity describing the response to the solenoidal field is limited by the momentum relaxation, like in a normal metal. The response to the potential electric field depends, in addition, on the branch imbalance relaxation rate. The damping of plasma oscillations of superconducting electrons is determined by dielectric relaxation and is small. Relaxation of branch imbalance determined by elastic scattering is large enough to make the Carlson-Goldman mode in d-wave superconductors overdamped.Comment: 11 pages, latex, no figures, submitted to Physical Review

    AC Josephson Effect Induced by Spin Injection

    Full text link
    Pure spin currents can be injected and detected in conductors via ferromagnetic contacts. We consider the case when the conductors become superconducting. A DC pure spin current flowing in one superconducting wire towards another superconductor via a ferromagnet contact induces AC voltage oscillations caused by Josephson tunneling of condensate electrons. Quasiparticles simultaneously counterflow resulting in zero total electric current through the contact. The Josephson oscillations can be accompanied by Carlson-Goldman collective modes leading to a resonance in the voltage oscillation amplitude.Comment: 5 page

    Convective Term and Transversely Driven Charge-Density Waves

    Full text link
    We derive the convective terms in the damping which determine the structure of the moving charge-density wave (CDW), and study the effect of a current flowing transverse to conducting chains on the CDW dynamics along the chains. In contrast to a recent prediction we find that the effect is orders of magnitude smaller, and that contributions from transverse currents of electron- and hole-like quasiparticles to the force exerted on the CDW along the chains act in the opposite directions. We discuss recent experimental verification of the effect and demonstrate experimentally that geometry effects might mimic the transverse current effect.Comment: RevTeX, 9 pages, 1 figure, accepted for publications in PR

    Evidence for Two Time Scales in Long SNS Junctions

    Full text link
    We use microwave excitation to elucidate the dynamics of long superconductor / normal metal / superconductor Josephson junctions. By varying the excitation frequency in the range 10 MHz - 40 GHz, we observe that the critical and retrapping currents, deduced from the dc voltage vs. dc current characteristics of the junction, are set by two different time scales. The critical current increases when the ac frequency is larger than the inverse diffusion time in the normal metal, whereas the retrapping current is strongly modified when the excitation frequency is above the electron-phonon rate in the normal metal. Therefore the critical and retrapping currents are associated with elastic and inelastic scattering, respectively

    Field Dependence of the Josephson Plasma Resonance in Layered Superconductors with Alternating Junctions

    Full text link
    The Josephson plasma resonance in layered superconductors with alternating critical current densities is investigated in a low perpendicular magnetic field. In the vortex solid phase the current densities and the squared bare plasma frequencies decrease linearly with the magnetic field. Taking into account the coupling due to charge fluctuations on the layers, we extract from recent optical data for SmLa_{1-x} Sr_x CuO_{4-delta} the Josephson penetration length lambda_{ab} approximately 1100 A parallel to the layers at T=10 K.Comment: 5 pages, 6 eps-figures, final version with minor misprints correcte

    Josephson Plasma Resonance as a Structural Probe of Vortex Liquid

    Full text link
    Recent developments of the Josephson plasma resonance and transport c-axis measurements in layered high Tc_{c} superconductors allow to probe Josephson coupling in a wide range of the vortex phase diagram. We derive a relation between the field dependent Josephson coupling energy and the density correlation function of the vortex liquid. This relation provides a unique opportunity to extract the density correlation function of pancake vortices from the dependence of the plasma resonance on the abab-component of the magnetic field at a fixed cc-axis component.Comment: 4 pages, 1 fugure, accepted to Phys. Rev. Let

    The Monitor Project: Stellar rotation at 13~Myr: I. A photometric monitoring survey of the young open cluster h~Per

    Full text link
    We aim at constraining the angular momentum evolution of low mass stars by measuring their rotation rates when they begin to evolve freely towards the ZAMS, i.e. after the disk accretion phase has stopped. We conducted a multi-site photometric monitoring of the young open cluster h Persei that has an age of ~13 Myr. The observations were done in the I-band using 4 different telescopes and the variability study is sensitive to periods from less than 0.2 day to 20 days. Rotation periods are derived for 586 candidate cluster members over the mass range 0.4<=M/Msun<=1.4. The rotation period distribution indicates a sligthly higher fraction of fast rotators for the lower mass objects, although the lower and upper envelopes of the rotation period distribution, located respectively at ~0.2-0.3d and ~10d, are remarkably flat over the whole mass range. We combine this period distribution with previous results obtained in younger and older clusters to model the angular momentum evolution of low mass stars during the PMS. The h Per cluster provides the first statistically robust estimate of the rotational period distribution of solar-type and lower mass stars at the end of the PMS accretion phase (>10 Myr). The results are consistent with models that assume significant core-envelope decoupling during the angular momentum evolution to the ZAMS.Comment: 39 pages, 19 figures, light curves in appendix, 1 long tabl

    Equilibrium Low Temperature Heat Capacity of the Spin Density Wave compound (TMTTF)2 Br: effect of a Magnetic Field

    Full text link
    We have investigated the effect of the magnetic field (B) on the very low-temperature equilibrium heat capacity ceq of the quasi-1 D organic compound (TMTTF)2Br, characterized by a commensurate Spin Density Wave (SDW) ground state. Below 1K, ceq is dominated by a Schottky-like contribution, very sensitive to the experimental time scale, a property that we have previously measured in numerous DW compounds. Under applied field (in the range 0.2- 7 T), the equilibrium dynamics, and hence ceq extracted from the time constant, increases enormously. For B = 2-3 T, ceq varies like B2, in agreement with a magnetic Zeeman coupling. Another specific property, common to other Charge/Spin density wave (DW) compounds, is the occurrence of metastable branches in ceq, induced at very low temperature by the field exceeding a critical value. These effects are discussed within a generalization to SDWs in a magnetic field of the available Larkin-Ovchinnikov local model of strong pinning. A limitation of the model when compared to experiments is pointed out.Comment: 10 pages, 11 figure
    • …
    corecore