26 research outputs found

    Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics

    No full text
    The provenance study of archaeological materials is an important step in understanding the cultural and economic life of ancient human communities. One of the most popular approaches in provenance studies is to obtain the chemical composition of material and process it with chemometric methods. In this paper, we describe a combination of the total-reflection X-ray fluorescence (TXRF) method and chemometric techniques (PCA, k-means cluster analysis, and SVM) to study Neolithic ceramic samples from eastern Siberia (Baikal region). A database of ceramic samples was created and included 10 elements/indicators for classification by geographical origin and ornamentation type. This study shows that PCA cannot be used as the primary method for provenance purposes, but can show some patterns in the data. SVM and k-means cluster analysis classified most of the ceramic samples by archaeological site and type with high accuracy. The application of chemometric techniques also showed the similarity of some samples found at sites located close to each other. A database created and processed by SVM or k-means cluster analysis methods can be supplemented with new samples and automatically classified

    Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics

    No full text
    The provenance study of archaeological materials is an important step in understanding the cultural and economic life of ancient human communities. One of the most popular approaches in provenance studies is to obtain the chemical composition of material and process it with chemometric methods. In this paper, we describe a combination of the total-reflection X-ray fluorescence (TXRF) method and chemometric techniques (PCA, k-means cluster analysis, and SVM) to study Neolithic ceramic samples from eastern Siberia (Baikal region). A database of ceramic samples was created and included 10 elements/indicators for classification by geographical origin and ornamentation type. This study shows that PCA cannot be used as the primary method for provenance purposes, but can show some patterns in the data. SVM and k-means cluster analysis classified most of the ceramic samples by archaeological site and type with high accuracy. The application of chemometric techniques also showed the similarity of some samples found at sites located close to each other. A database created and processed by SVM or k-means cluster analysis methods can be supplemented with new samples and automatically classified

    Transverse polarisation measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}}=68.4 GeV with the LHCb detector

    No full text
    A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda}hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}}=68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst) P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \, Furthermore, the results are shown as a function of the Feynman xx variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst). P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements

    Measurement of the Branching Fraction of B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} Decays

    No full text
    International audienceThe ratio of branching fractions between B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} and B+J/ψK+B^{+} \rightarrow J/\psi K^{*+} decays is measured with proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. The measured value is BB0J/ψπ0BB+J/ψK+=(1.153±0.053±0.048)×102\frac{\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}}}{\mathcal{B}_{B^{+} \rightarrow J/\psi K^{*+}}} = (1.153 \pm 0.053 \pm 0.048 ) \times 10^{-2}, where the first uncertainty is statistical and the second is systematic. The branching fraction for B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} decays is determined using the branching fraction of the normalisation channel, resulting in BB0J/ψπ0=(1.670±0.077±0.069±0.095)×105\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}} = (1.670 \pm 0.077 \pm 0.069 \pm 0.095) \times 10^{-5}, where the last uncertainty corresponds to that of the external input. This result is consistent with the current world average value and competitive with the most precise single measurement to date

    Search for the rare hadronic decay Bs0ppˉB_s^0\to p \bar{p}

    No full text
    A search for the rare hadronic decay Bs0→pp¯ is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb-1. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0→pp¯)&lt;4.4(5.1)×10-9 at 90% (95%) confidence level; this is currently the world’s best upper limit. The decay mode B0→pp¯ is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0→pp¯)=(1.27±0.15±0.05±0.04)×10-8, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0→K+π-. The combination of the two LHCb measurements of the B0→pp¯ branching fraction yields B(B0→pp¯)=(1.27±0.13±0.05±0.03)×10-8.A search for the rare hadronic decay Bs0ppˉB_s^0\to p \bar{p} is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb1^{-1}. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0ppˉ)<4.4 (5.1)×109{\cal B}(B_s^0\to p \bar{p}) < 4.4~(5.1) \times 10^{-9} at 90% (95%) confidence level; this is currently the world's best upper limit. The decay mode B0ppˉB^0\to p \bar{p} is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0ppˉ)=(1.27±0.15±0.05±0.04)×108{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0K+πB^0\to K^+\pi^-. The combination of the two LHCb measurements of the B0ppˉB^0\to p \bar{p} branching fraction yields B(B0ppˉ)=(1.27±0.13±0.05±0.03)×108{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.13 \pm 0.05 \pm 0.03) \times 10^{-8}

    Observation of sizeable ω\omega contribution to χc1(3872)π+πJ/ψ\chi_{c1}(3872) \to \pi^+\pi^- J/\psi decays

    No full text
    Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)→π+π-J/ψ decays, produced via B+→K+χc1(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9  fb-1. A sizeable contribution from the isospin conserving χc1(3872)→ωJ/ψ decay is established for the first time, (21.4±2.3±2.0)%, with a significance of more than 7.1σ. The amplitude of isospin violating decay, χc1(3872)→ρ0J/ψ, relative to isospin conserving decay, χc1(3872)→ωJ/ψ, is properly determined, and it is a factor of 6 larger than expected for a pure charmonium state.Resonant structures in the dipion mass spectrum from χc1(3872)π+πJ/ψ\chi_{c1}(3872)\to\pi^+\pi^- J/\psi decays, produced via B+K+χc1(3872)B^+\to K^+\chi_{c1}(3872) decays, are analyzed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1fb^{-1}. A sizeable contribution from the isospin conserving χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi decay is established for the first time, (21.4±2.3±2.0)%(21.4\pm2.3\pm2.0)\%, with a significance of more than 7.1σ7.1\sigma. The amplitude of isospin violating decay, χc1(3872)ρ0J/ψ\chi_{c1}(3872)\to\rho^0 J/\psi, relative to isospin conserving decay, χc1(3872)ωJ/ψ\chi_{c1}(3872)\to\omega J/\psi, is properly determined, and it is a factor of six larger than expected for a pure charmonium state

    Nuclear modification factor of neutral pions in the forward and backward regions in ppPb collisions

    No full text
    The nuclear modification factor of neutral pions is measured in proton-lead collisions collected at a center-of-mass energy per nucleon of 8.168.16 TeV with the LHCb detector. The π0\pi^0 production cross section is measured differentially in transverse momentum (pTp_{T}) for 1.5π0 production cross section is measured differentially in transverse momentum (pT) for 1.5<pT<10.0  GeV and in center-of-mass pseudorapidity (ηc.m.) regions 2.5<ηc.m.<3.5 (forward) and -4.0<ηc.m.<-3.0 (backward) defined relative to the proton beam direction. The forward measurement shows a sizable suppression of π0 production, while the backward measurement shows the first evidence of π0 enhancement in proton-lead collisions at the LHC. Together, these measurements provide precise constraints on models of nuclear structure and particle production in high-energy nuclear collisions.The nuclear modification factor of neutral pions is measured in proton-lead collisions collected at a center-of-mass energy per nucleon of 8.16~{\rm TeV}withtheLHCbdetector.The with the LHCb detector. The \pi^0productioncrosssectionismeasureddifferentiallyintransversemomentum( production cross section is measured differentially in transverse momentum (p_{\rm T})for) for 1.5<p_{\rm T}<10.0~{\rm GeV}andincenterofmasspseudorapidity( and in center-of-mass pseudorapidity (\eta_{\rm c.m.})regions) regions 2.5<\eta_{\rm c.m.}<3.5(forward)and (forward) and -4.0<\eta_{\rm c.m.}<-3.0(backward)definedrelativetotheprotonbeamdirection.Theforwardmeasurementshowsasizablesuppressionof (backward) defined relative to the proton beam direction. The forward measurement shows a sizable suppression of \pi^0production,whilethebackwardmeasurementshowsthefirstevidenceof production, while the backward measurement shows the first evidence of \pi^0$ enhancement in proton-lead collisions at the LHC. Together, these measurements provide precise constraints on models of nuclear structure and particle production in high-energy nuclear collisions

    Measurement of CP asymmetries in D(s)+ηπ+ {D}_{(s)}^{+}\to \eta {\pi}^{+} and D(s)+ηπ+ {D}_{(s)}^{+}\to {\eta}^{\prime }{\pi}^{+} decays

    No full text
    Searches for CP violation in the decays D(s)+ηπ+ {D}_{(s)}^{+}\to \eta {\pi}^{+} and D(s)+ηπ+ {D}_{(s)}^{+}\to {\eta}^{\prime }{\pi}^{+} are performed using pp collision data corresponding to 6 fb1^{−1} of integrated luminosity collected by the LHCb experiment. The calibration channels D(s)+ϕπ+ {D}_{(s)}^{+}\to \phi {\pi}^{+} are used to remove production and detection asymmetries. The resulting CP-violating asymmetries areACP=(D+ηπ+)=(0.34±0.66±0.16±0.05)%,ACP=(Ds+ηπ+)=(0.32±0.51±0.12)%,ACP=(D+ηπ+)=(0.49±0.18±0.06±0.05)%,ACP=(Ds+ηπ+)=(0.01±0.12±0.08)%, {\displaystyle \begin{array}{l}{\mathcal{A}}^{CP}=\left({D}^{+}\to \eta {\pi}^{+}\right)=\left(0.34\pm 0.66\pm 0.16\pm 0.05\right)\%,\\ {}{\mathcal{A}}^{CP}=\left({D}_s^{+}\to \eta {\pi}^{+}\right)=\left(0.32\pm 0.51\pm 0.12\right)\%,\\ {}\begin{array}{l}{\mathcal{A}}^{CP}=\left({D}^{+}\to {\eta}^{\prime }{\pi}^{+}\right)=\left(0.49\pm 0.18\pm 0.06\pm 0.05\right)\%,\\ {}{\mathcal{A}}^{CP}=\left({D}_s^{+}\to {\eta}^{\prime }{\pi}^{+}\right)=\left(0.01\pm 0.12\pm 0.08\right)\%,\end{array}\end{array}} where the first uncertainty is statistical, the second is systematic and the third, relevant for the D+^{+} channels, is due to the uncertainty on ACP=(D+ϕπ+) {\mathcal{A}}^{CP}=\left({D}^{+}\to \phi {\pi}^{+}\right) . These measurements, currently the most precise for three of the four channels considered, are consistent with the absence of CP violation. A combination of these results with previous LHCb measurements is presented.[graphic not available: see fulltext]Searches for CPCP violation in the decays D(s)+ηπ+D^+_{(s)}\rightarrow \eta \pi^+ and D(s)+ηπ+D^+_{(s)}\rightarrow \eta^{\prime} \pi^+ are performed using pppp collision data corresponding to 6 fb1^{-1} of integrated luminosity collected by the LHCb experiment. The calibration channels D(s)+ϕπ+D^+_{(s)}\rightarrow \phi \pi^+ are used to remove production and detection asymmetries. The resulting CPCP-violating asymmetries are ACP(D+ηπ+)=(0.34±0.66±0.16±0.05)%A^{CP}(D^+ \rightarrow \eta \pi^+) = (0.34 \pm 0.66 \pm 0.16 \pm 0.05)\%, ACP(Ds+ηπ+)=(0.32±0.51±0.12)%A^{CP}(D^+_s \rightarrow \eta \pi^+) = (0.32 \pm 0.51 \pm 0.12)\%, ACP(D+ηπ+)=(0.49±0.18±0.06±0.05)%A^{CP}(D^+ \rightarrow \eta^{\prime} \pi^+) = (0.49 \pm 0.18 \pm 0.06 \pm 0.05)\%, ACP(Ds+ηπ+)=(0.01±0.12±0.08)%A^{CP}(D^+_s \rightarrow \eta^{\prime} \pi^+) = (0.01 \pm 0.12 \pm 0.08)\%, where the first uncertainty is statistical, the second is systematic and the third, relevant for the D+D^+ channels, is due to the uncertainty on ACP(D+ϕπ+)A^{CP}(D^+ \to \phi \pi^+). These measurements, currently the most precise for three of the four channels considered, are consistent with the absence of CPCP violation. A combination of these results with previous LHCb measurements is presented

    Amplitude analysis of the Λc+pKπ+\Lambda^+_c\to pK^-\pi^+ decay and Λc+\Lambda^+_c baryon polarization measurement in semileptonic beauty hadron decays

    No full text
    An amplitude analysis of Λc+pKπ+\Lambda^+_c \to pK^-\pi^+ decays together with a measurement of the Λc+\Lambda^+_c polarization vector in semileptonic beauty hadron decays is presented. A sample of 400000400\,000 candidates is selected from proton-proton collisions recorded by the LHCb detector at a center-of-mass energy of 13 TeV. An amplitude model is developed and the resonance fractions as well as two- and three-body decay parameters are reported. The mass and width of the Λ(2000)\Lambda(2000) state are also determined. A significant Λc+\Lambda^+_c polarization is found. A large sensitivity of the Λc+pKπ+\Lambda^+_c \to pK^-\pi^+ decay to the polarization is seen, making the amplitude model suitable for Λc+\Lambda^+_c polarization measurements in other systems.An amplitude analysis of Λc+→pK-π+ decays together with a measurement of the Λc+ polarization vector in semiōleptonic beauty hadron decays is presented. A sample of 400 000 candidates is selected from proton-proton collisions recorded by the LHCb detector at a center-of-mass energy of 13 TeV. An amplitude model is developed and the resonance fractions as well as two- and three-body decay parameters are reported. The mass and width of the Λ(2000) state are also determined. A significant Λc+ polarization is found. A large sensitivity of the Λc+→pK-π+ decay to the polarization is seen, making the amplitude model suitable for Λc+ polarization measurements in other systems.An amplitude analysis of Λc+pKπ+\Lambda^+_c \to pK^-\pi^+ decays together with a measurement of the Λc+\Lambda^+_c polarization vector in semileptonic beauty hadron decays is presented. A sample of 400000400\,000 candidates is selected from proton-proton collisions recorded by the LHCb detector at a center-of-mass energy of 13 TeV. An amplitude model is developed and the resonance fractions as well as two- and three-body decay parameters are reported. The mass and width of the Λ(2000)\Lambda(2000) state are also determined. A significant Λc+\Lambda^+_c polarization is found. A large sensitivity of the Λc+pKπ+\Lambda^+_c \to pK^-\pi^+ decay to the polarization is seen, making the amplitude model suitable for Λc+\Lambda^+_c polarization measurements in other systems

    Search for CPCP violation using T^\hat{T}-odd correlations in B0ppˉK+πB^{0} \to p \bar p K^{+} \pi^{-} decays

    No full text
    A search for CPCP and PP violation in charmless four-body B0ppˉK+πB^{0} \to p \bar p K^{+} \pi^{-} decays is performed using triple-product asymmetry observables. It is based on proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 77, 88 and 1313 TeV, corresponding to a total integrated luminosity of 8.48.4 fb1^{-1}. The CPCP- and PP-violating asymmetries are measured both in the integrated phase space and in specific regions. No evidence is seen for CPCP violation. PP-parity violation is observed at a significance of 5.8 standard deviations.A search for CP and P violation in charmless four-body B0→pp¯K+π- decays is performed using triple-product asymmetry observables. It is based on proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of 8.4  fb-1. The CP- and P-violating asymmetries are measured both in the integrated phase space and in specific regions. No evidence is seen for CP violation. P-parity violation is observed at a significance of 5.8 standard deviations.A search for CPCP and PP violation in charmless four-body B0ppˉK+πB^{0} \to p \bar p K^{+} \pi^{-} decays is performed using triple-product asymmetry observables. It is based on proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 77, 88 and 1313 TeV, corresponding to a total integrated luminosity of 8.48.4 fb1^{-1}. The CPCP- and PP-violating asymmetries are measured both in the integrated phase space and in specific regions. No evidence is seen for CPCP violation. PP-parity violation is observed at a significance of 5.8 standard deviation
    corecore