680 research outputs found
Short range repulsive interatomic interactions in energetic processes in solids
The repulsive interaction between two atoms at short distances is studied in
order to explore the range of validity of standard first-principles simulation
techniques and improve the available short-range potentials for the description
of energetic collision cascades in solids. Pseudopotentials represent the
weakest approximation, given their lack of explicit Pauli repulsion in the
core-core interactions. The energy (distance) scale realistically accessible is
studied by comparison with all-electron reference calculations in some binary
systems. Reference calculations are performed with no approximations related to
either core (frozen core, augmentation spheres) or basis set. This is important
since the validity of such approximations, even in all-electron calculations,
rely on the small core perturbation usual in low-energy studies. The expected
importance of semicore states is quantified. We propose a scheme for improving
the electronic screening given by pseudopotentials for very short distances.
The results of this study are applied to the assessment and improvement of
existing repulsive empirical potentials.Comment: 10 pages, 7 figure
Continuous melting through a hexatic phase in confined bilayer water
Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems
Intrinsic point defects and volume swelling in ZrSiO4 under irradiation
The effects of high concentration of point defects in crystalline ZrSiO4 as
originated by exposure to radiation, have been simulated using first principles
density functional calculations. Structural relaxation and vibrational studies
were performed for a catalogue of intrinsic point defects, with different
charge states and concentrations. The experimental evidence of a large
anisotropic volume swelling in natural and artificially irradiated samples is
used to select the subset of defects that give similar lattice swelling for the
concentrations studied, namely interstitials of O and Si, and the anti-site
Zr(Si), Calculated vibrational spectra for the interstitials show additional
evidence for the presence of high concentrations of some of these defects in
irradiated zircon.Comment: 9 pages, 7 (color) figure
Combined photo- and electroreflectance of multijunction solar cells enabled by subcell electric coupling
Electric coupling between subcells of a monolithically grown multijunction
solar cell in short circuit allows their simultaneous and independent
characterization by means of photo- and electroreflectance. The photovoltage
generated by selective absorption of the pump beam in a given subcell during
photoreflectance measurements results in reverse biasing the complementary
subunits at the modulation frequency set on the pump illumination. Such voltage
bias modulation acts then as external perturbation on the complementary
subcells. The spectral separation of the different subcell absorption ranges
permits the probe beam to record in a single spectrum the response of the
complete device as a combination of photo- and electroreflectance, thereby
providing access for diagnosis of subcells on an individual basis. This form of
modulation spectroscopy is demonstrated on a GaInP/GaAs tandem solar cell.Comment: 5 pages, 4 figures. This article has been accepted by Appl. Phys.
Lett. After it is published, it will be found at
https://doi.org/10.1063/1.506260
Geometry and quantum delocalization of interstitial oxygen in silicon
The problem of the geometry of interstitial oxygen in silicon is settled by
proper consideration of the quantum delocalization of the oxygen atom around
the bond-center position. The calculated infrared absorption spectrum accounts
for the 517 and 1136 cm bands in their position, character, and isotope
shifts. The asymmetric lineshape of the 517 cm peak is also well
reproduced. A new, non-infrared-active, symmetric-stretching mode is found at
596 cm. First-principles calculations are presented supporting the
nontrivial quantum delocalization of the oxygen atom.Comment: uuencoded, compressed postscript file for the whole. 4 pages (figures
included), accepted in PR
Systematically improvable optimized atomic basis sets for {\it ab inito} calculations
We propose a unique scheme to construct fully optimized atomic basis sets for
density-functional calculations. The shapes of the radial functions are
optimized by minimizing the {\it spillage} of the wave functions between the
atomic orbital calculations and the converged plane wave calculations for dimer
systems. The quality of the bases can be systematically improved by increasing
the size of the bases within the same framework. The scheme is easy to
implement and very flexible. We have done extensive tests of this scheme for
wide variety of systems. The results show that the obtained atomic basis sets
are very satisfactory for both accuracy and transferability
Energetics and stability of dangling-bond silicon wires on H passivated Si(100)
We evaluate the electronic, geometric and energetic properties of quasi 1-D
wires formed by dangling bonds on Si(100)-H (2 x 1). The calculations are
performed with density functional theory (DFT). Infinite wires are found to be
insulating and Peierls distorted, however finite wires develop localized
electronic states that can be of great use for molecular-based devices. The
ground state solution of finite wires does not correspond to a geometrical
distortion but rather to an antiferromagnetic ordering. For the stability of
wires, the presence of abundant H atoms in nearby Si atoms can be a problem. We
have evaluated the energy barriers for intradimer and intrarow diffusion
finding all of them about 1 eV or larger, even in the case where a H impurity
is already sitting on the wire. These results are encouraging for using
dangling-bond wires in future devices.Comment: 8 pages, 6 figure
Surface energy and stability of stress-driven discommensurate surface structures
A method is presented to obtain {\it ab initio} upper and lower bounds to
surface energies of stress-driven discommensurate surface structures, possibly
non-periodic or exhibiting very large unit cells. The instability of the
stressed, commensurate parent of the discommensurate structure sets an upper
bound to its surface energy; a lower bound is defined by the surface energy of
an ideally commensurate but laterally strained hypothetical surface system. The
surface energies of the phases of the Si(111):Ga and Ge(111):Ga systems and the
energies of the discommensurations are determined within eV.Comment: 4 pages RevTeX. 2 Figures not included. Ask for a hard copy (through
regular mail) to [email protected]
New Superhard Phases for 3D C60-based Fullerites
We have explored new possible phases of 3D C60-based fullerites using
semiempirical potentials and ab-initio density functional methods. We have
found three closely related structures - two body centered orthorhombic and one
body centered cubic - having 52, 56 and 60 tetracoordinated atoms per molecule.
These 3D polymers result in semiconductors with bulk moduli near 300 GPa, and
shear moduli around 240 GPa, which make them good candidates for new low
density superhard materials.Comment: To be published in Physical Review Letter
- …
