680 research outputs found

    Fixing hiring practices means asking the right question

    Get PDF
    Correspondence in Natur

    Short range repulsive interatomic interactions in energetic processes in solids

    Full text link
    The repulsive interaction between two atoms at short distances is studied in order to explore the range of validity of standard first-principles simulation techniques and improve the available short-range potentials for the description of energetic collision cascades in solids. Pseudopotentials represent the weakest approximation, given their lack of explicit Pauli repulsion in the core-core interactions. The energy (distance) scale realistically accessible is studied by comparison with all-electron reference calculations in some binary systems. Reference calculations are performed with no approximations related to either core (frozen core, augmentation spheres) or basis set. This is important since the validity of such approximations, even in all-electron calculations, rely on the small core perturbation usual in low-energy studies. The expected importance of semicore states is quantified. We propose a scheme for improving the electronic screening given by pseudopotentials for very short distances. The results of this study are applied to the assessment and improvement of existing repulsive empirical potentials.Comment: 10 pages, 7 figure

    Continuous melting through a hexatic phase in confined bilayer water

    Get PDF
    Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems

    Intrinsic point defects and volume swelling in ZrSiO4 under irradiation

    Full text link
    The effects of high concentration of point defects in crystalline ZrSiO4 as originated by exposure to radiation, have been simulated using first principles density functional calculations. Structural relaxation and vibrational studies were performed for a catalogue of intrinsic point defects, with different charge states and concentrations. The experimental evidence of a large anisotropic volume swelling in natural and artificially irradiated samples is used to select the subset of defects that give similar lattice swelling for the concentrations studied, namely interstitials of O and Si, and the anti-site Zr(Si), Calculated vibrational spectra for the interstitials show additional evidence for the presence of high concentrations of some of these defects in irradiated zircon.Comment: 9 pages, 7 (color) figure

    Combined photo- and electroreflectance of multijunction solar cells enabled by subcell electric coupling

    Full text link
    Electric coupling between subcells of a monolithically grown multijunction solar cell in short circuit allows their simultaneous and independent characterization by means of photo- and electroreflectance. The photovoltage generated by selective absorption of the pump beam in a given subcell during photoreflectance measurements results in reverse biasing the complementary subunits at the modulation frequency set on the pump illumination. Such voltage bias modulation acts then as external perturbation on the complementary subcells. The spectral separation of the different subcell absorption ranges permits the probe beam to record in a single spectrum the response of the complete device as a combination of photo- and electroreflectance, thereby providing access for diagnosis of subcells on an individual basis. This form of modulation spectroscopy is demonstrated on a GaInP/GaAs tandem solar cell.Comment: 5 pages, 4 figures. This article has been accepted by Appl. Phys. Lett. After it is published, it will be found at https://doi.org/10.1063/1.506260

    Geometry and quantum delocalization of interstitial oxygen in silicon

    Full text link
    The problem of the geometry of interstitial oxygen in silicon is settled by proper consideration of the quantum delocalization of the oxygen atom around the bond-center position. The calculated infrared absorption spectrum accounts for the 517 and 1136 cm1^{-1} bands in their position, character, and isotope shifts. The asymmetric lineshape of the 517 cm1^{-1} peak is also well reproduced. A new, non-infrared-active, symmetric-stretching mode is found at 596 cm1^{-1}. First-principles calculations are presented supporting the nontrivial quantum delocalization of the oxygen atom.Comment: uuencoded, compressed postscript file for the whole. 4 pages (figures included), accepted in PR

    Systematically improvable optimized atomic basis sets for {\it ab inito} calculations

    Full text link
    We propose a unique scheme to construct fully optimized atomic basis sets for density-functional calculations. The shapes of the radial functions are optimized by minimizing the {\it spillage} of the wave functions between the atomic orbital calculations and the converged plane wave calculations for dimer systems. The quality of the bases can be systematically improved by increasing the size of the bases within the same framework. The scheme is easy to implement and very flexible. We have done extensive tests of this scheme for wide variety of systems. The results show that the obtained atomic basis sets are very satisfactory for both accuracy and transferability

    Energetics and stability of dangling-bond silicon wires on H passivated Si(100)

    Full text link
    We evaluate the electronic, geometric and energetic properties of quasi 1-D wires formed by dangling bonds on Si(100)-H (2 x 1). The calculations are performed with density functional theory (DFT). Infinite wires are found to be insulating and Peierls distorted, however finite wires develop localized electronic states that can be of great use for molecular-based devices. The ground state solution of finite wires does not correspond to a geometrical distortion but rather to an antiferromagnetic ordering. For the stability of wires, the presence of abundant H atoms in nearby Si atoms can be a problem. We have evaluated the energy barriers for intradimer and intrarow diffusion finding all of them about 1 eV or larger, even in the case where a H impurity is already sitting on the wire. These results are encouraging for using dangling-bond wires in future devices.Comment: 8 pages, 6 figure

    Surface energy and stability of stress-driven discommensurate surface structures

    Full text link
    A method is presented to obtain {\it ab initio} upper and lower bounds to surface energies of stress-driven discommensurate surface structures, possibly non-periodic or exhibiting very large unit cells. The instability of the stressed, commensurate parent of the discommensurate structure sets an upper bound to its surface energy; a lower bound is defined by the surface energy of an ideally commensurate but laterally strained hypothetical surface system. The surface energies of the phases of the Si(111):Ga and Ge(111):Ga systems and the energies of the discommensurations are determined within ±0.2\pm 0.2 eV.Comment: 4 pages RevTeX. 2 Figures not included. Ask for a hard copy (through regular mail) to [email protected]

    New Superhard Phases for 3D C60-based Fullerites

    Full text link
    We have explored new possible phases of 3D C60-based fullerites using semiempirical potentials and ab-initio density functional methods. We have found three closely related structures - two body centered orthorhombic and one body centered cubic - having 52, 56 and 60 tetracoordinated atoms per molecule. These 3D polymers result in semiconductors with bulk moduli near 300 GPa, and shear moduli around 240 GPa, which make them good candidates for new low density superhard materials.Comment: To be published in Physical Review Letter
    corecore