1,581 research outputs found

    Automatization techniques for processing biomedical signals using machine learning methods

    Get PDF
    The Signal Processing Group (Department of Signal Theory and Communications, University Carlos III, Madrid, Spain) offers the expertise of its members in the automatic processing of biomedical signals. The main advantages in this technology are the decreased cost, the time saved and the increased reliability of the results. Technical cooperation for the research and development with internal and external funding is sought

    Dissipative and stochastic geometric phase of a qubit within a canonical Langevin framework

    Get PDF
    Dissipative and stochastic effects in the geometric phase of a qubit are taken into account using a geometrical description of the corresponding open--system dynamics within a canonical Langevin framework based on a Caldeira--Leggett like Hamiltonian. By extending the Hopf fibration S3S2S^{3}\to S^{2} to include such effects, the exact geometric phase for a dissipative qubit is obtained, whereas numerical calculations are used to include finite temperature effects on it.Comment: 5 pages, 2 figure

    Dividing Line between Quantum and Classical Trajectories: Bohmian Time Constant

    Get PDF
    This work proposes an answer to a challenge posed by Bell on the lack of clarity in regards to the line between the quantum and classical regimes in a measurement problem. To this end, a generalized logarithmic nonlinear Schr\"odinger equation is proposed to describe the time evolution of a quantum dissipative system under continuous measurement. Within the Bohmian mechanics framework, a solution to this equation reveals a novel result: it displays a time constant which should represent the dividing line between the quantum and classical trajectories. It is shown that continuous measurements and damping not only disturb the particle but compel the system to converge in time to a Newtonian regime. While the width of the wave packet may reach a stationary regime, its quantum trajectories converge exponentially in time to classical trajectories. In particular, it is shown that damping tends to suppress further quantum effects on a time scale shorter than the relaxation time of the system. If the initial wave packet width is taken to be equal to 2.8 10^{-15} m (the approximate size of an electron), the Bohmian time constant is found to have an upper limit, i. e., τBmax=1026s{\tau_{B\max}} = {10^{- 26}}s

    Bohmian Trajectories of Airy Packets

    Get PDF
    The discovery of Berry and Balazs in 1979 that the free-particle Schr\"odinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schr\"odinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space-time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject's theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schr\"odinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.Comment: 8 page
    corecore