6 research outputs found

    Microcirculation and Hyperbaric Oxygen Treatment

    Get PDF
    The microcirculation is anatomical and consists of arterioles, capillaries, and venules that perform metabolic requirements and oxygen distribution to the tissues. During physiological or pathological stress, it balances between the oxygen delivery and the demand. This delicate balance can play an important role in the progression of critical illnesses and has a role in the development of organ dysfunction. Reduced microvascular perfusion is seen in many diseases, and hyperbaric oxygen treatment (HBOT) has potentially beneficial effects on the microcirculatory environment. It has been shown that HBOT improves microcirculation independent from systemic hemodynamic parameters, which is a key therapeutic target in the critically ill patient. HBOT is emerging as an adjunct to traditional surgery and antibiotic therapy for the special kinds of problematic wounds or purpura fulminans, which are caused by meningococcal sepsis. HBOT also can increase oxygen supply to the ischemic tissue to reduce the extent of irreversible tissue damage in ischemic stroke, femoral head necrosis, diabetic foot ulcer, and carbon monoxide intoxication. In this chapter, we aim to describe microcirculation with its monitoring systems and to show the effectiveness of HBOT in different clinical settings, which are related to microcirculatory dysfunction

    Hydrocephaly: Medical Treatment

    Get PDF
    Hydrocephaly is a prevalent condition in all age groups. At present, the most frequent strategies used to treat hydrocephaly are surgical shunting procedures, which are still associated with multiple complications. The main goal of the medical therapy for the lowering of high ventricular pressure is to avoid shunting or to reduce and decrease intracranial pressure (ICP) until shunt surgery. Medications affect cerebrospinal fluid dynamics by decreasing secretion or increasing reabsorption. Medical treatment for manipulation of water balance or cerebrospinal fluid (CSF) production reduces mortality in both infants and adults with neurological disorders. Medical treatment has an important role in the management of hydrocephaly especially in patients not suitable for shunt and in patients whom the shunt alone is not able to control the hydrocephaly. The treatment is used to delay surgical intervention but is not effective in the long treatment of chronic hydrocephaly

    Effects of Systemic Erythropoietin on Ischemic Wound Healing in Rats

    No full text
    Results of in vivo studies have shown erythropoietin (EPO) is associated with anti-inflammatory, anti-apoptotic, and cell protective effects on wound healing. These effects are dose-dependent. The aim of this study was to evaluate whether the duration of EPO treatment affects the healing process in the ischemic wound. Forty-two (42) Sprague-Dawley rats were anesthetized, wounded with H-shaped flaps, and randomized to 2 groups; Group 1 received 400 u/kg/day EPO and Group 2 received a saline solution, both via intraperitoneal injection following the wounding. All substances were administered once daily at the same time for up to 10 days after surgery. At days 3, 5, and 10, 7 rats from each group were sacrificed. Skin samples were stained with hematoxylin/eosin, viewed under an optical microscope at 10X and 40X magnification, and analyzed by blinded investigators for re-epithelialization, neovascularization amount and maturation of granulation tissue, inflammatory cells, and ulcer healing using an evaluation scale where 0 = none; 1 = partial; 2 = complete, but immature/thin: and 4 = complete and mature. Blood hemoglobin and hematocrit levels also were measured. Data were analyzed using ANOVA one-way test (P < 0.05). Hemoglobin and hematocrit levels rose while subsequent doses of EPO were administered over time, accompanied by a transient surge in healing on day 5, when differences in healing scores were significant. Flap necrosis, ulceration, and abscess were noted on post-wounding day 10 near the pedicle. The study showed EPO therapy can improve wound healing early in the post-wounding period but can reduce wound healing after post-injury treatment day 5. Further research is necessary, particularly to establish how EPO influences the microcirculation and rheology

    Epidemiology of sepsis in intensive care units in Turkey: A multicenter, point-prevalence study

    No full text
    corecore