33 research outputs found

    Searching for γ\gamma-ray signature in WHSP blazars: Fermi-LAT detection of 150 excess signal in the 0.3-500 GeV band

    Full text link
    A direct search of γ\gamma-ray emission centered on multi-frequency selected candidates is a valuable complementary approach to the standard search adopted in current γ\gamma-ray Fermi-LAT catalogs. Our candidates are part of the 2WHSP sample, that was assembled with the aim of providing targets for Imaging Atmospheric Cherenkov Telescopes (IACT), and is currently the largest set of high synchrotron peaked (HSP) blazars. We perform a likelihood analysis with the Fermi Science Tools using positions from 400 2WHSP blazars as seeds of tentative γ\gamma-ray sources. This enabled us to detect 150 γ\gamma-ray excess signals that have not yet been reported in previous γ\gamma-ray catalogs (1FGL, 2FGL, and 3FGL). By identifying new sources, we solve a fraction of the extragalactic isotropic γ\gamma-ray background (IGRB) composition, improving the description of the γ\gamma-ray sky. Our analysis considers the 0.3-500 GeV energy band, integrating over 7.2 yrs of Fermi-LAT observation and making use of the Pass 8 data release. Within the 150 2WHSPs that showed excess γ\gamma-ray signature: 85 are high-significance detections with test statistic (TS)>>25, and 65 are lower-significance detections with TS between 10 to 25. We study the γ\gamma-ray photon spectral index distribution, the likelihood of detection according to the synchrotron peak brightness, and plot the measured γ\gamma-ray LogN-LogS of HSP blazars, also discussing the portion of the IGRB that has been resolved by this work. We report on four cases where we could resolve source confusion and find counterparts for unassociated 3FGL sources with the help of high-energy TS maps together with multi-frequency data. The 150 new γ\gamma-ray sources are named with the acronym 1BIGB for the first version of the Brazil ICRANet Gamma-ray Blazar catalog, in reference to the cooperation agreement supporting this work.Comment: Accepted for publication in A&A: September 01, 201

    Searching for neutrino emissions from multi-frequency sources

    Full text link
    Pinpointing the neutrino sources is crucial to unveil the mystery of high-energy cosmic rays. The search for neutrino-source candidates from coincident neutrino-photon signatures and electromagnetic objects with peculiar flaring behaviors have the potential to increase our chances of finding neutrino emitters. In this paper, we first study the temporal correlations of astrophysical flares with neutrinos, considering a few hundreds of multi-frequency sources from ALMA, WISE, Swift, and Fermi in the containment regions of IceCube high-energy alerts. Furthermore, the spatial correlations between blazars and neutrinos are investigated using the subset of 10-year IceCube track-like neutrinos with around 250 thousand events. In the second test, we account for 2700 blazars with different types of flaring phases in addition to sole position. No significant neutrino emissions were found from our analyses. Our results indicate an interesting trend showing the infrared flaring stages of WISE blazars might be correlated with arrival times of the neutrino alerts. Possible overflow of neutrinos associated with two of our blazar sub-samples are also illustrated. One is characterized by a significant flaring lag in infrared with respect to gamma-rays, like seen for TXS0506+056, and the other is characterized by highly simultaneous infrared and gamma-ray flares. These phenomena suggest the need to improve current multi-frequency light-curve catalogs to pair with the advent of more sensitive neutrino observatories.Comment: 30 pages, 18 figure

    Multifrequency Data from Active Galactic Nuclei

    No full text
    There is growing interest from the Astrophysics community to identify and study gamma-ray sources, especially the ones detected at E>100GeV in the Very High Energy (VHE) regime. Distant galaxies harboring an Active Nucleus (AGN) were recently detected as major extragalactic sources of TeV photons, turning to be key component for a variety of studies like understanding AGN's jet properties and composition, or probing emission mechanism probably in the vicinity of super massive black holes (SMBH). Even more remarkable are the multitude of questions currently being addressed by considering the interaction of VHE photons along its propagation through cosmological distances, such as unveiling the spectral shape of the Extragalactic Background Light (EBL), probing the existence of Intergalactic Magnetic Fields, or even addressing fundamental question related to Quantum Gravity and Stand Model physics. So far, the number of such VHE "Astrophysical laboratories" identified up to now is not that big, reaching only 148 galactic/extragalactic TeV detected sources. This work took forward the idea of preparing a large catalog of High Synchrotron Peak blazars (HSP), which shows to be the most abundant population of extragalactic TeV emitters, with the main goal of revealing and characterize promising targets for TeV observatories. HSP blazars are remarkably rare, with only a few hundreds of them expected to be above the sensitivity limits of currently available surveys. To find these very uncommon objects, there was devised a method that combines multifrequency selection criteria based in unique features from HSP's Spectral Energy Distribution. The so called 1WHSP sample was assembled including ~1000 sources that were characterized case by case, and since it is the largest sample of HSP blazars, a series of population studies were performed. The reliability of using the 1WHSP sample for unveiling gamma-ray emitters was confirmed, since it allowed to associated many newly identified sources from the 3FGL catalog with their 1WHSP counterparts. Also, by performing gamma-ray data analysis in the energy range 300MeV-200GeV, based on six year of observations with Fermi satellite and making use of the Fermi Science Tools, a dozen of new gamma-ray point-like sources were unveiled. Considering multifrequency data from radio to gamma-rays, a list with the 22 brightest 1WHSP sources was studied in details, and its potential for detectability with H.E.S.S.II observatory was evaluated. By properly extrapolating the measured gamma-ray spectrum to higher energies, and taking into account the absorption of VHE photons due to interaction with EBL light, the observation time need for a significant detection was estimated, and is part of a recent TeV observation proposal submitted to the HESS observatory (see appendix). Still, there is a large potential for expanding the present catalog, and it has already brought significant information for the VHE Astrophysics community, since before this work there was no clear estimation for the number of sources that could be in reach of the present and upcoming generation of VHE observatories like the Cherenkov Telescope Array (CTA). In addition, by correlating the arrival direction of ultra high energy cosmic rays (UHECR) with the position of bright 1WHSP sources, it is shown that HSP blazars could well be part of the population emitting UHE particles. Such result is unique in the sense that it is based on direct source-event chance associations, and particularly interesting since it challenges what was previously expected for direct associations of this kind. In brief, the interaction of UHECR with background photons would attenuate sources further than 100Mpc (known as GZK horizon), instead the associated 1WHSP sources extends at least up to z=0.4 meaning one order of magnitude larger distance

    Study of Tokamak plasmas : ion temperature measurements via vacuum ultraviolet spectroscopy, and power deposition by neutral beam injection

    No full text
    Orientador: Munemasa MachidaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb WataghinResumo: O desenvolvimento deste trabalho ocorreu em duas frentes distintas relacionadas à grande área de pesquisa: Fusão Termonuclear Controlada em dispositivos do tipo tokamak. A primeira fase abordou estudos de espectroscopia, tendo como principal motivação o aprimoramento dos métodos de medida e tratamento de dados na área de diagnósticos de plasmas quentes. Os trabalhos consistem no diagnóstico por espectroscopia na região do ultravioleta do vácuo (UVV), realizados nos tokamaks TCABr-USP (Lab. Plasmas USP) e Nova-Unicamp (Lab. de Plasmas IFGW-UNICAMP), e concentraram-se na utilização do detector multicanal do tipo MCP-CCD, acoplado a um espectr ômetro de grade simples McPherson-225 operando na região espectral de 500 a 3200 °A, buscando ordens superiores de difração para o cálculo da temperatura iônica (Ti) via medida do alargamento Doppler (??D). A ideia para o cálculo da Ti é a utilização da relação entre os sinais de ordens superiores de difração (OSD), a fim de reduzir a influência do alargamento instrumental no cálculo do parâmetro ??D, do qual depende a medida de Ti. Também foram coletados dados com fotomultiplicadora, explorando a possibilidade de registrar a evolução temporal (com resolução de 1ms) da intensidade das emissões de algumas das principais impurezas presentes no plasma. Numa segunda fase, realizaram-se estudos do aquecimento do plasma por meio de injeção de partícula neutras (IPN) de alta energia (42-93 keV) no tokamak ASDEX Upgrade (Max-Planck-Institut fur Plasmaphysik; Garching- Alemanha). Tal atividade foi desenvolvida dentro do programa de mestrado em fusão nuclear da União Europeia, ErasmusMundus Fusion-EP, que esteve sob orientação de Dr. Ryter Fran¸cois, e supervisão de Prof. Dr. Stroth Ulrich (Universitat Stuttgart) e Jose Ramon Martin Solis (Universidad Carlos III de Madrid). O tokamak ASDEX Upgrade geralmente opera com plasma de Deutério, sendo a Injeção de Partículas Neutras de Deutério (IPN-D) a principal forma de aquecimento. Para este esquema de operação usual, os perfis de deposição de energia do feixe, ao longo da direção radial, foram extensivamente documentados por meio de cálculos com o código computacional FAFNER. Formulas gerais para os principais parâmetros relacionados à potência depositada e confinamento dos íons rápidos foram desenvolvidas e são rotineiramente utilizadas. No entanto, plasmas de Hélio aquecido por injeção de hidrogênio (IPN-H) e deutério (IPN-D), ocasionalmente são utilizados no ASDEX Upgrade. Uma das motivações para o estudo desse cenário reside na possibilidade de operação do ITER com plasma de hélio, ao menos na fase inicial de baixa ativação. Tal escolha permitiria comissionar os sistemas de controle e diagnóstico sem a necessidade de ativação radioativa das estruturas que compõe o reator, já que as taxas de fusão nuclear seriam mínimas. Até então, a documentação da deposição de potência por IPN em plasma de hélio no tokamak ASDEX Upgrade ainda não havia sido realizada. O objetivo do presente trabalho é a documentação das propriedades de aquecimento por IPN-H e IPN-D em plasma de hélio, utilizando o código FAFNER, sendo de grande interesse viabilizar o uso de uma nova base de dados chamada ADAS. Esta, contém tabelas com coeficientes de atenuação ?s??i adicionais, permitindo levar em conta a presença de átomos excitados no feixe de partículas neutras interagindo com o plasma, o que tem impacto direto sobre a deposição de potência por IPNAbstract: The development of the present work has happened in two frames strictly related with the research on Thermonuclear Fusion in tokamaks. The first phase was dedicated to studies with spectroscopy, which had as main motivation the development of measurement and data treatment methods concerning hot plasmas diagnostic. Basically, it consisted in UV spectroscopic measurements carried on at TCABr-USP (Lab. Plasmas USP - São Paulo, Brazil) and Nova-Unicamp (Lab. de Plasmas do IFGW-UNICAMP - Campinas, Brazil) tokamaks. The activities were concentrated on the use of a multichannel detector MCP-CCD type, coupled with a single grating spectrometer McPherson-225, allowing VUV spectroscopy at the 500 - 3200°A spectra. The main objective was to look for signals of high diffraction orders aiming to calculate ion temperature via Doppler broadening (??D). The idea for getting precise Ti measurements was to make a relation between high diffraction order (HDO) signals to reduce the influence of the instrumental broadening, which has been accomplished with success. A series of data with photomultiplier was collected at the UV region, exploring the possibility of getting the time evolution of the emission intensity of the main impurities from the plasma. All work carried out on spectroscopy in small size experiments like NOVA tokamak are of great importance. In a second phase, studies related with plasma heating by Neutral Beam Injection (NBI) 42-93 keV were carried out in ASDEX Upgrade tokamak (at Max-Planck-Institut fur Plasmaphysik; Garching-Germany). This activity was developed in the frame of European Union Master Program, ErasmusMundus Fusion-EP, oriented by Dr. Ryter Fran¸cois, and supervised by Prof. Dr. Stroth Ulrich (Universitat Stuttgart) and Prof. Dr.Jose Ramon Martin Solis (Universidad Carlos III de Madrid). The ASDEX Upgrade tokamak is generally operated in deuterium plasma with deuterium Neutral Beam Injection (D-NBI) as main heating. For this usual operation scheme, the heating power deposition has been extensively documented by calculations with the code FAFNER. General fit formulas for the most important parameters related to the power deposition and fast ion content have been developed and are routinely used. However, helium plasmas heated by H-NBI or D-NBI are also occasionally performed in ASDEX Upgrade. One of the motivation for using helium resides in the fact that the low activation phase of ITER might be, at least partly, carried out in helium plasmas. So far, the documentation of the NBI deposition in helium plasmas in ASDEX Upgrade has not been made. The aim of the present work was to document the heating properties of H-NBI and D-NBI for helium plasmas, using the FAFNER code, being of great interest to get FAFNER running with new libraries (ADAS) for the calculation of the stopping rate coefficients ?s??i, allowing to evaluate the influence of excited atoms in the neutral beam. The final goal was to provide a reliable estimate of the main quantities linked to NBI heating in a set of helium discharges, in particular absorbed power, fast ion losses and fast ion energy contentMestradoFísica de Plasmas e Descargas ElétricasMestre em Físic

    2WHSP: A multi-frequency selected catalog of VHE gamma-ray blazars and blazar candidates

    No full text
    High Synchrotron Peaked Blazars (HSPs) are extremely important for VHE astronomy. We built the largest existing catalog of High Synchrotron Blazars (2WHSP) based on multi-frequency data. The catalog is an extension of the 1WHSP list. We compared several general properties of HSPs such as the synchrotron peak, the redshift and IR the color-color diagram. We also built the logN-logS for the sources, trying to see the evolution and the deficiency of the catalog. The catalog will provide a unique sample of targets for VHE observations in future since the HSPs are the dominant extra-Galactic sources in VHE sky. This might help find more VHE sources later. In the future, we will use this catalog to estimate other VHE properties of HSPs

    Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source

    Get PDF
    On MJD 58018 the IceCube neutrino observatory detected a highlyenergetic, well-reconstructed neutrino, IceCube-170922A, at a distance of 0:1° to a γ-ray flaring blazar, TXS 0506+056. Follow-up searches in archival data additionally revealed a larger flare of neutrinos from the same direction. In order to complete the picture we present here a full multi-wavelength study of the region around IceCube-170922A. While we identify also other non-thermal counterpart candidates, we show that all the evidence points to TXS 0506+056 as the dominant neutrino emitter. Additionally, an analysis of all the available Fermi-LAT data indicates a hard spectrum/low flux of TXS 0506+056 during the neutrino flare in contrast to a soft spectrum/high flux at the arrival time of IceCube-170922A. Putting all the pieces together we conclude that the SED of TXS 0506+056 can be energetically reconnected for both neutrino observations
    corecore