742 research outputs found
A Poisson process approximation for generalized K-5 confidence regions
One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems
Interference charecterisation, location and bandwidth estimation in emerging WiFi networks
Wireless LAN technology based on the IEEE 802.11 standard, commonly referred
to as WiFi, has been hugely successful not only for the last hop access to the Internet
in home, office and hotspot scenarios but also for realising wireless backhaul in mesh
networks and for point -to -point long- distance wireless communication. This success
can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching
economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices,
has led to significant amount of research effort looking at the performance issues
arising from various factors, including interference, CSMA/CA based MAC protocol
used by 802.11 devices, the impact of link and physical layer overheads on application
performance, and spatio-temporal channel variations. These factors affect the performance
of applications and services that run over WiFi networks. In this thesis, we
experimentally investigate the effects of some of the above mentioned factors in the
context of emerging WiFi network scenarios such as multi- interface indoor mesh networks,
802.11n -based WiFi networks and WiFi networks with virtual access points
(VAPs). More specifically, this thesis comprises of four experimental characterisation
studies: (i) measure prevalence and severity of co- channel interference in urban WiFi
deployments; (ii) characterise interference in multi- interface indoor mesh networks;
(iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation
on WiFi fingerprinting based location estimation; and (iv) study the effects of
newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth
estimation.With growing density of WiFi deployments especially in urban areas, co- channel
interference becomes a major factor that adversely affects network performance. To
characterise the nature of this phenomena at a city scale, we propose using a new measurement
methodology called mobile crowdsensing. The idea is to leverage commodity
smartphones and the natural mobility of people to characterise urban WiFi co- channel
interference. Specifically, we report measurement results obtained for Edinburgh, a
representative European city, on detecting the presence of deployed WiFi APs via the
mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily
used and there is hardly any activity in the 5GHz band even though relatively it
has a greater number of available channels. Spatial analysis of spectrum usage reveals
that co- channel interference among nearby APs operating in the same channel
can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar
to those of WiFi deployments in public spaces of different indoor environments. We
validate our approach in comparison with wardriving, and also show that our findings
generally match with previous studies based on other measurement approaches. As
an application of the mobile crowdsensing based urban WiFi monitoring, we outline a
cloud based WiFi router configuration service for better interference management with
global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical
way to achieve high end -to -end network performance and better utilisation of
available spectrum. However this gives rise to another type of interference (referred to
as coexistence interference) due to co- location of multiple radio interfaces. We show
that such interference can be so severe that it prevents concurrent successful operation
of collocated interfaces even when they use channels from widely different frequency
bands. We propose the use of antenna polarisation to mitigate such interference and
experimentally study its benefits in both multi -band and single -band configurations. In
particular, we show that using differently polarised antennas on a multi -radio platform
can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent
channel interference phenomena that underlie multi -radio coexistence interference.
We also validate observations about adjacent channel interference from previous
studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications.
The rapidly growing adoption of smartphones has resulted in a plethora of mobile
applications that rely on position information (e.g., shopping apps that use user position
information to recommend products to users and help them to find what they want
in the store). WiFi fingerprinting is a popular and well studied approach for indoor
location estimation that leverages the existing WiFi infrastructure and works based on
the difference in strengths of the received AP signals at different locations. However,
understanding the impact of WiFi network deployment aspects such as multi -band
APs and VAPs has not received much attention in the literature. We first examine the
impact of various aspects underlying a WiFi fingerprinting system. Specifically, we
investigate different definitions for fingerprinting and location estimation algorithms
across different indoor environments ranging from a multi- storey office building to
shopping centres of different sizes. Our results show that the fingerprint definition
is as important as the choice of location estimation algorithm and there is no single
combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz
and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with
WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the
5GHz band yields more accurate location estimation. We show that the inclusion of
VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems;
we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from
adaptive application content delivery, transport-level transmission rate adaptation and
admission control to traffic engineering and peer node selection in peer -to- peer /overlay
networks [ 1, 2]. Given its importance, it has been received much research attention in
both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards),
resulting in different ABE techniques and tools proposed to optimise different criteria
and suit different scenarios. However, effects of new MAC/PHY layer enhancements
in new and next generation WiFi networks (based on 802.11n and 802.11ac
standards) have not been studied yet. We experimentally find that among different
new features like frame aggregation, channel bonding and MIMO modes (spacial division
multiplexing), frame aggregation has the most harmful effect as it has direct
effect on ABE by distorting the measurement probing traffic pattern commonly used
to estimate available bandwidth. Frame aggregation is also specified in both 802.11n
and 802.1 lac standards as a mandatory feature to be supported. We study the effect of
enabling frame aggregation, for the first time, on the performance of the ABE using an
indoor 802.11n wireless testbed. The analysis of results obtained using three tools -
representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based
approaches for ABE - led us to come up with the two key principles of jumbo probes
and having longer measurement probe train sizes to counter the effects of aggregating
frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that
is aware of the underlying frame aggregation by incorporating these principles. The
experimental evaluation of WBest+ shows more accurate ABE in the presence of frame
aggregation.Overall, the contributions of this thesis fall in three categories - experimental
characterisation, measurement techniques and mitigation/solution approaches for performance
problems in emerging WiFi network scenarios. The influence of various factors
mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation
of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are
carried out in real environments. New measurement approaches are also introduced
to aid better experimental evaluation or proposed as new measurement tools. These
include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of
co- existence interference; and WBest+ tool for available bandwidth estimation. Finally,
new mitigation approaches are proposed to address challenges and problems
identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting
antenna polarisation diversity to remedy the effects of co- existence interference
in multi -interface platforms; taking advantage of VAPs and multi -band operation for
better location estimation; and introducing the jumbo frame concept and longer probe
train sizes to improve performance of ABE tools in next generation WiFi networks
Corneal alterations associated with pseudoexfoliation syndrome and glaucoma: A literature review
A systematic literature review was performed evaluating articles examining the effects of pseudoexfoliation syndrome (PEX) and glaucoma (PEXG) on the cornea with a focus on the corneal endothelium. We searched for articles relevant to pseudoexfoliation syndrome, pseudoexfoliation glaucoma and corneal endothelial cell counts using Pubmed, Google Scholar Database, Web of Science and cochrane Library databases published prior to September of 2016. We then screened the references of these retrieved papers and performed a Web of Science cited reference search. corneal characteristics analyzed included central corneal thickness (ccT), corneal nerve density, endothelial cell density (EcD), polymegathism, and pleomorphism. These parameters were compared in the following populations: control, PEX, PEXG, and primary open angle glaucoma (POAG). Over 30 observational studies were reviewed. Most studies showed a statistically significant lower EcD in PEX and PEXG populations compared to controls. Overall, PEX eyes had a non-statistically significant trend of lower EcDs compared to PEXG eyes. No consistent trends were found when analyzing differences in ccT amongst control, PEX and PEXG groups. For the few studies that looked at corneal nerve characteristics, the control groups were found to have statistically significantly greater nerve densities than PEX eyes, which had significantly greater densities than PEXG eyes. EcD and corneal nerve densities may be potential metrics for risk-stratifying patients with PEX and PEXG. Our literature review provided further evidence of the significant negative influence PEX has on the cornea, worsening as patients convert to PEXG
The future of glaucoma surgery
Glaucoma surgery is ripe for innovation. In the last few years, there has been a substantial increase in the number of devices approaching commercialization. While not all that is new is necessarily good, the role of these devices in changing glaucoma surgery is equally important in terms of both success and failure. Trabeculectomy, the most commonly performed incisional filtration surgery for glaucoma, is subjective by nature and certainly has risks. As devices aim to standardize glaucoma surgery, specifically subconjunctival filtration surgery, predictability and in turn safety should theoretically improve. This may allow the glaucoma surgeon to intervene earlier in the disease process, prevent more advanced vision loss and potentially decrease the burden of medications
Vacuum Stability and Triviality Analyses of the Renormalizable Coloron Model
The renormalizable coloron model is built around a minimally extended color
gauge group, which is spontaneously broken to QCD. The formalism introduces
massive color-octet vector bosons (colorons), as well as several new scalars
and fermions associated with the symmetry breaking sector. In this paper, we
examine vacuum stability and triviality conditions within the context of the
renormalizable coloron model up to a cutoff energy scale of 100~TeV, by
computing the beta-functions of all relevant couplings and determining their
running behavior as a function of the renormalization scale. We constrain the
parameter space of the theory for four separate scenarios based on differing
fermionic content, and demonstrate that the vectorial scenarios are less
constrained by vacuum stability and triviality bounds than the chiral
scenarios. Our results are summarized in exclusion plots for the separate
scenarios, with previous bounds on the model overlaid for comparison. We find
that a 100 TeV hadron collider could explore the entire allowed parameter space
of the chiral models very effectively.Comment: 17 pages, embedded color pdf figures. Typos corrected and appendix on
fermion charges and mass generation adde
- …