41 research outputs found

    Traveling wave method for simulating geometric beam coupling impedance of a beamscreen with pumping holes

    Full text link
    In particle accelerators, pumping holes in a vacuum chamber can be a source of unwanted broadband coupling impedance, leading to beam instabilities. Analytical methods have been previously developed to estimate the impedance of holes in circular-like chambers e.g. the beamscreen of the Large Hadron Collider (LHC). More sophisticated chamber designs like that of the High Energy LHC (HE-LHC) and the Future Circular Collider (FCC-hh) call for a different way to calculate the impedance. We propose using decomposition of the wakefield into synchronous traveling waves and employing a numerical solver to find the impedance of each wave. This method is compared to the direct time domain wakefield calculation method and its greater sensitivity to small impedances is shown

    ДОСЛІДЖЕННЯ ТЕПЛОВІДДАЧІ ТА ГІДРАВЛІЧНОГО ОПОРУ У СТРІЧКОВО-ПОТОЧНИХ КАНАЛАХ ПАНЕЛЬНИХ ПЛАСТИНЧАСТИХ ТЕПЛООБМІННИКІВ

    Get PDF
    The results of experimental investigation of heat transfer and pressure drop in waved-form channels of panel-plate heat exchangers are presented. The experimental pattern of panel-plate heat exchanger and experimental unit is described. The basic equations for film heat transfer and friction coefficient were obtained in dimensionless form. It is underlined that proposed construction of panel-plate heat exchanger is optimal for waste gaseous flows heat recuperation when another flow is liquid, for example, water flow. The original waved-form channel for gaseous flow is proposed. Such panel-plate heat exchangers will be an effective tool for use of high temperature waste heat integration in a number of processes and then for polluting emission decrease.Приведены результаты исследования теплоотдачи и гидравлического сопротивления в ленточно-поточных каналах панельных пластинчатых теплообменников Получены базовые зависимости в критериальной форме для расчета теплоотдачи и коэффициента гидравлического сопротивления единицы длины канала. Описана экспериментальная модель и экспериментальная установка. Отмечена важная роль пластинчато-панельных теплообменников в рекуперации тепла сбросных газовых потоков.Приведені результати дослідження тепловіддачі та гідравлічного опору у стрічково-поточних каналах панельних пластинчастих теплообмінників. Отримані базові рівняння у критеріальній формі для розрахунку тепловіддачі та коефіцієнту гідравлічного опору одиниці довжини каналу. Описана експериментальна модель та експериментальна установка. Відмічена важлива роль пластинчато-панельних теплообмінників у рекуперації тепла викидних газів

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Erratum: Towards a muon collider

    Get PDF
    The original online version of this article was revised: The additional reference [139] has been added. Tao Han’s ORICD ID has been incorrectly assigned to Chengcheng Han and Chengcheng Han’s ORCID ID to Tao Han. Yang Ma’s ORCID ID has been incorrectly assigned to Lianliang Ma, and Lianliang Ma’s ORCID ID to Yang Ma. The original article has been corrected

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    PBG structures for SRF particle accelerators

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2016.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 175-181).This thesis presents the design and testing of the first multi-cell superconducting accelerating cavity with a photonic band gap (PBG) coupler cell. The structure serves as a building block for superconducting radio-frequency (SRF) electron accelerators. It has five accelerating cells: four cells of elliptical shape, commonly used for SRF cavities, and one PBG cell in the middle. The purpose of the PBG cell is to damp unwanted Higher-Order electromagnetic Modes (HOMs) in the structure. Strong HOM damping is highly desirable for SRF cavities because it increases maximum achievable beam current by reducing the negative effect that HOMs have on the propagating electron beam. In the presented structure, effective HOM damping is achieved because of the inherent frequency selective properties of the PBG cell. The HOM spectrum in the five-cell cavity was carefully analyzed using eigenmode and wakefield simulations with good agreement between the two methods. The simulations showed that most of the dangerous HOMs were damped to fairly low external quality factors on the order of 102-104. This in principle implies that the new multicell cavity will support much higher beam currents than achievable in conventional SRF cavities that are not optimized for high-current operation. The improved HOM damping does not significantly compromise the accelerating properties of the cavity which are comparable to those of the cavities that only use the elliptical cells. Additionally, the PBG cavity does not need HOM couplers on the beam-pipe sections of the structure, and hence for the same amount of acceleration has a shorter length in the direction of the propagating beam. The five-cell cavity was fabricated of high purity niobium. Fabrication and tuning mechanisms were successfully tested on a copper prototype before being implemented for the niobium cavity. The accelerating gradient profile in the tuned niobium cavity matched the desired profile within a 5% accuracy. Two cryogenic tests were conducted with the five-cell cavity. The first test did not succeed due to a problem with the low quality factor of the cavity's accelerating mode. The problem was identified as a poor waveguide joint in the fundamental power coupler. Modifications were made to the waveguide joint and a second cryogenic test was conducted. In the second test, the high cavity quality factor was demonstrated at the temperature of 4.2 K for accelerating gradients up to 3 MV/m. The measured value of the cavity's quality factor with all ports closed was 1.55 x 108, in agreement with the prediction. This agreement indicated that the implemented surface treatment was effective in the cavity, including the complex PBG cell. No cavity leaks were observed during the tests in superfluid helium, proving the reliability of the fabrication process which included difficult electron-beam welds. No hard barriers in the accelerating gradient were observed during the test, indicating the absence of fundamental limits to cavity's operation for the gradient of at least several MV/m. A series of room-temperature experiments were conducted to measure external quality factors of six dangerous HOMs in the fabricated five-cell cavity. The measurements agreed with the simulations, showing all of the measured Q-factors below 3 x 103. Effective HOM damping, together with the ability to support accelerating gradients of multiple MV/m at cryogenic temperatures, makes the cavity an attractive candidate for future high-current accelerators.by Sergey A. Arsenyev.Ph. D

    Broadband Impedance of Pumping Holes and Interconnects in the FCC-hh Beamscreen

    No full text
    In the proposed Future Circular Collider (FCC-hh) pumping holes and interconnects between sections of the beamscreen can be sources of unwanted broadband impedance, potentially leading to the transverse mode coupling instability (TMCI). The pumping holes pose a greater challenge to the impedance calculation due to their small contribution per hole. Unlike for the Large Hadron Collider (LHC), analytical methods cannot be applied due to the complex beamscreen geometry and the greater size of the holes. Instead, two computational methods are used and compared to each other. For the interconnects, the impedance due to a sophisticated system of tapers is also estimated using computational methods

    Modelling Wake Impedance of a Rough Surface in Application to the FCC-hh Beamscreen

    No full text
    The inner surface of the future circular collider (FCC-hh) beamscreen is proposed to be laser-treated in order to mitigate the electron cloud build-up. However, the rough structure of the treated surface can result in unwanted impedance increase, potentially leading to the transverse mode coupling instability (TMCI). Three models have been adopted to estimate the wake impedance of a beamscreen with a rough surface. The models use the resistive wall formalism generalized for the case of an arbitrary surface impedance. The results apply to a beamscreen of a circular cross-section with the homogeneously rough inner surface for the case of ultrarelativistic particles. The free parameters of the models were fit into preliminary measurements of the surface resistivity, giving, as a result, a range of the real and the imaginary parts of the wake impedance
    corecore