3,027 research outputs found
Transverse Momentum Spectra in Au+Au and d+Au Collisions at =200 GeV and the Pseudorapidity Dependence of High p Suppression
We present spectra of charged hadrons from Au+Au and d+Au collisions at
GeV measured with the BRAHMS experiment at RHIC. The
spectra for different collision centralities are compared to spectra from collisions at the same energy scaled by the number of binary
collisions. The resulting ratios (nuclear modification factors) for central
Au+Au collisions at and evidence a strong suppression in
the high region (2 GeV/c). In contrast, the d+Au nuclear
modification factor (at ) exhibits an enhancement of the high
yields. These measurements indicate a high energy loss of the high
particles in the medium created in the central Au+Au collisions. The lack of
suppression in d+Au collisions makes it unlikely that initial state effects can
explain the suppression in the central Au+Au collisions.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Evidence for a Mixed Mass Composition at the âankleâ in the Cosmic-ray Spectrum
We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the âankleâ at lg(E/eV) = 18.5â19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A \u3e 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoredas the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth
D3-D7 Quark-Gluon Plasmas at Finite Baryon Density
We present the string dual to SU(Nc) N=4 SYM, coupled to Nf massless
fundamental flavors, at finite temperature and baryon density. The solution is
determined by two dimensionless parameters, both depending on the 't Hooft
coupling at the scale set by the temperature T:
, weighting the backreaction of the flavor
fields and , where is the
baryon density. For small values of these two parameters the solution is given
analytically up to second order. We study the thermodynamics of the system in
the canonical and grand-canonical ensembles. We then analyze the energy loss of
partons moving through the plasma, computing the jet quenching parameter and
studying its dependence on the baryon density. Finally, we analyze certain
"optical" properties of the plasma. The whole setup is generalized to non
abelian strongly coupled plasmas engineered on D3-D7 systems with D3-branes
placed at the tip of a generic singular Calabi-Yau cone. In all the cases,
fundamental matter fields are introduced by means of homogeneously smeared
D7-branes and the flavor symmetry group is thus a product of abelian factors.Comment: 27 pages; v2: 29 pages, 1 (new) figure, new section 4.4 on optical
properties, references, comments added; v3: eq. (3.19), comments and a
reference adde
Evidence for a Mixed Mass Composition at the âankleâ in the Cosmic-ray Spectrum
We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the âankleâ at lg(E/eV) = 18.5â19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A \u3e 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoredas the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth
Recommended from our members
Inclusive J/Ï production at mid-rapidity in pp collisions at âs = 5.02 TeV
Inclusive J/Ï production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (|y| < 0.9) in the dielectron decay channel down to zero transverse momentum pT, using a data sample corresponding to an integrated luminosity of Lint = 19.4 ± 0.4 nbâ1. The measured pT-integrated inclusive J/Ï production cross sec- tion is dÏ/dy = 5.64 ± 0.22(stat.) ± 0.33(syst.) ± 0.12(lumi.) ÎŒb. The pT-differential cross section d2Ï/dpTdy is measured in the pT range 0â10 GeV/c and compared with state-of- the-art QCD calculations. The J/Ï ăpTă and ăpT2ă are extracted and compared with results obtained at other collision energies. [Figure not available: see fulltext.]
Recommended from our members
Measurement of Î (1520) production in pp collisions at âs=7TeV and pâPb collisions at âsNN=5.02TeV
The production of the Î (1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s=7TeV and in pâPb collisions at sNN=5.02TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Î (1520) â pK - and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and pâPb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (Ï, K, KS0, p, Î) describes the shape of the Î (1520) transverse momentum distribution up to 3.5GeV/c in pâPb collisions. In the framework of this model, this observation suggests that the Î (1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Î (1520) to the yield of the ground state particle Î remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in pâPb collisions on the Î (1520) yield
Recommended from our members
Measurement of charged jet cross section in pp collisions at s =5.02 TeV
The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of
Recommended from our members
Measurement of Ï(1S) Elliptic Flow at Forward Rapidity in Pb-Pb Collisions at sqrt[s_{NN}]=5.02ââTeV.
The first measurement of the Ï(1S) elliptic flow coefficient (v_{2}) is performed at forward rapidity (2.
Recommended from our members
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at âsNN = 5.02 TeV
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval â1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.
- âŠ