20 research outputs found

    A critical view of sustainable architecture in Turkey: a proposal for the municipality of Seyrek

    Get PDF
    Thesis (Doktoral)-İzmir Institute of Technology, Architecture, İzmir, 2003Includes bibliographical references (leaves: 417-463)Text in English; Abstract: Turkish and Englishxxv, 540 leavesThis dissertation aims at developing a sustainable design process prioritizing locality in social, cultural, ecological, political, economic, technological, legalistic,and architectural terms. To this end, it aims first of all at developing an approach for elimination of misconceptions.primarily informed by technological, morphological and numerical indicators.about what constitutes the concept of sustainability in architectural practice today and therefore starts out from a critical historical overview of approaches and practices for sustainability in the world and in Turkey. The thesis undertakes the critique of sterile projects in sterile environments and calibrates the replicable and exemplary aspects of international and national sustainable design practices so as to introduce, promote and guide realistic, practicable, and case-specific sustainable architectural solutions. The specific focus in both the critical evaluation of extant sustainable practices abroad and the proposed process for the municipality of Seyrek in Menemen, Izmir, Turkey, is the distinction between the assets and needs of industrialized northern geographies and southern geographies which are in the process of industrialization and which are frequently misguided by economic exigencies imposed by the industrialized north. As a village located in an Important Bird Area, in the vicinity of a Ramsar Site and on the edge of a First-Degree Natural Conservation Area, the case area in question provides a trenchant example for the study of the meaning of sustainability in a southern socio-politico-economic zone and a challenge for the architectural designer. Seyrek is a mirror of global as well as local problems today. It is located in the middle of Gediz Delta, the large agricultural land as well, and on the edge of several specialized industrial districts of the urban sprawl of Izmir.Placing the analysis of the case area in the context of the wider framework of international policy, the thesis proceeds to propose specific design tools for a sustainable housing development project in a crucial typical new residential segment of the semi-rural settlement of Seyrek

    La conservazione preventiva del patrimonio librario come possibile alternativa al restauro tradizionale

    Get PDF
    The present paper focuses on the close relation between library collections and their preservation environment, aiming, in particular, at highlighting the importance of promoting and sustaining the monitoring. The paper proposes some simple and ready-to-use technologies – smart monitoring – to prevent future damages

    A critical view of sustainable architecture in Turkey: a proposal for the municipality of Seyrek

    No full text
    Thesis (Doktoral)-İzmir Institute of Technology, Architecture, İzmir, 2003Includes bibliographical references (leaves: 417-463)Text in English; Abstract: Turkish and Englishxxv, 540 leavesThis dissertation aims at developing a sustainable design process prioritizing locality in social, cultural, ecological, political, economic, technological, legalistic,and architectural terms. To this end, it aims first of all at developing an approach for elimination of misconceptions.primarily informed by technological, morphological and numerical indicators.about what constitutes the concept of sustainability in architectural practice today and therefore starts out from a critical historical overview of approaches and practices for sustainability in the world and in Turkey. The thesis undertakes the critique of sterile projects in sterile environments and calibrates the replicable and exemplary aspects of international and national sustainable design practices so as to introduce, promote and guide realistic, practicable, and case-specific sustainable architectural solutions. The specific focus in both the critical evaluation of extant sustainable practices abroad and the proposed process for the municipality of Seyrek in Menemen, Izmir, Turkey, is the distinction between the assets and needs of industrialized northern geographies and southern geographies which are in the process of industrialization and which are frequently misguided by economic exigencies imposed by the industrialized north. As a village located in an Important Bird Area, in the vicinity of a Ramsar Site and on the edge of a First-Degree Natural Conservation Area, the case area in question provides a trenchant example for the study of the meaning of sustainability in a southern socio-politico-economic zone and a challenge for the architectural designer. Seyrek is a mirror of global as well as local problems today. It is located in the middle of Gediz Delta, the large agricultural land as well, and on the edge of several specialized industrial districts of the urban sprawl of Izmir.Placing the analysis of the case area in the context of the wider framework of international policy, the thesis proceeds to propose specific design tools for a sustainable housing development project in a crucial typical new residential segment of the semi-rural settlement of Seyrek

    Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates

    Get PDF
    Identifying the building parameters that significantly impact energy performance is an important step for enabling the reduction of the heating and cooling energy loads of apartment buildings in the design stage. Implementing passive design techniques for these buildings is not a simple task in most dense cities; their energy performance usually depends on uncertainties in the local climate and many building parameters, such as window size, zone height, and features of materials. For this paper, a sensitivity analysis was performed to determine the most significant parameters for buildings in hot-humid climates by considering the design of an existing apartment building in Izmir, Turkey. The Monte Carlo method is selected for sensitivity and uncertainty analyses with the Latin hypercube sampling (LHC) technique. The results show that the sensitivity of parameters in apartment buildings varies based on the purpose of the energy loads and locations in the building, such as the ground, intermediate, and top floors. In addition, the total window area, the heat transfer coefficient (U) and the solar heat gain coefficient (SHGC) of the glazing based on the orientation have the most considerable influence on the energy performance of apartment buildings in hot-humid climates

    Retrofit strategies for energy efficiency of historic urban fabric in mediterranean climate

    No full text
    © 2020 by the authors.Energy-efficient retrofitting of historic housing stock requires methodical approach, indepth analysis and case-specific regulatory system, yet only limited efforts have been realized. In large scale rehabilitation projects, it is essential to develop a retrofit strategy on how to decide energy-efficient solutions for buildings providing the most energy saving in a short time. This paper presents a pilot study conducted at a neighborhood scale, consisting of 22 pre-, early-republican and contemporary residential buildings in a historic urban fabric in the Mediterranean climate. This study aims to develop an integrated approach to describe case-specific solutions for larger scale historic urban fabric. It covers the building performance simulation (BPS) model and numerical analysis to determine the most related design parameters affecting annual energy consumption. All the case buildings were classified into three main groups to propose appropriate retrofit solutions in different impact categories. Retrofit solutions were gathered into two retrofit packages, Package 1 and 2, and separately, three individual operational solutions were determined, considering a fivelevelled assessment criteria of EN 16883:2017 Standard. Energy classes of case buildings were calculated based on National Building Energy Regulations. Changes in building classes were evaluated considering pre-and post-retrofit status of the buildings. For the integrated approach, the most related design parameters on annual energy consumption were specified through Pearson correlation analysis. The approach indicated that three buildings, representing each building group, can initially be retrofitted. For all buildings, while maximum energy saving was provided by Package 2 with 48.57%, minimum energy saving was obtained from Package 1 with 19.8%

    Effect of Building Envelope and Environmental Variables on Building Energy Performance: Case of a Residential Building in Mediterranean Climate

    No full text
    At least 30% of the World’s energy consumption and greenhouse gas emissions originate from buildings. Thus, design decisions should be well studied during the design phase of buildings following energy efficiency approaches. Environmental variables and properties of the building envelope are significant for energy efficiency. Thus, this study aims to investigate the potential of a residential building in the Mediterranean climate of Izmir, Turkey, regarding decreasing energy use and understanding the significance of architectural decisions during the design stage of buildings. Eight design scenarios were created by defining seven variables affecting energy consumption for room electricity, heating, and cooling. The first three scenarios focused on environmental-related variables, i.e., surrounding buildings, ground surface materials, and building orientation, while the last five scenarios investigated building envelope-related variables, i.e., thermal transmittance of the wall, floor and roof, glass, window frame, and door types, shading elements, and natural ventilation. Then, energy modeling and simulation are applied to test their potential for minimizing energy consumption. Research findings proposed that early architectural design decisions significantly influenced the case building’s energy performance. Thermal transmittance of the building components provided an annual energy saving of 22.4%, thus, was seen as the best-performed variable for the case building

    Farklı cam türleri ve yönlere göre pencere/duvar alanı oranının bina enerji performansına etkisi: Eğitim binası, İzmir

    No full text
    The opaque and transparent surfaces of buildings have an important role in the total percentage of energy loss or gain. Heat loss or gain from windows are dependent on the window-towall area ratio, the window glass type, and the type of window frame used. in the concept of energy efficient design, heat loss or gain from windows should be analyzed in detail in the early stages of building design by considering local climatic conditions. This study investigates a school building located in Izmir in Turkey, a city with a hot and humid climate. Various glass types with different glazing characteristics and number of layers, located in different parts of the buildings and with different window-to-wall ratios are analyzed and compared using building the energy analysis program “EnergyPlus“. Results indicate that window- to-wall area ratios, wall orientation and glass types are important factors in the building‘s total energy consumption. When the window-to-wall area ratio is increased from 10% to 60%, the winter heating load of the building decreases in maximum amount on the south side of the building and reduces in minimum amount on the east side of the building. When summer cooling load is investigated the highest increase in energy consumption is found on the south side of the building. on the eastern and western sides of the building the effect of increased energy consumption value remains low. When the total energy consumption (cooling + heating) is considered, it is calculated that the east and west sides have the biggest total effect and the northern wall has the smallest total effect. When low emissivity glass is used instead of double layer glass, in terms of energy consumption the building side order of effect remains the same, although actual values differ. It is therefore clear that using energy analysis programs to analyse different factors within the energy consumption of buildings will be beneficial in creating energy efficient solutions. This can be carried out in the earlier stages of the architectural design of the buildings or at the renovation stages of existing buildings.Binaların opak ve saydam yüzeyleri enerji kayıp ve kazançları açısından önemli bir role sahiptir. Binalarda, pencerelerden kaynaklanan güneş enerjisi kazanç ve ısı kayıp miktarları, pencere/duvar alanı oranı, cam tipi ve çerçeve gibi özelliklere bağlıdır. Enerji etkin tasarım bağlamında ısıtma ve soğutma amaçlı enerji tüketimine olan etkisi nedeni ile pencerelerden kazanılan güneş enerjisi ve kaybedilen ısı miktarının, erken tasarım aşamasında yerel iklim koşullarına göre analiz edilmesi gereklidir. Bu çalışmada, sıcak-nemli iklim koşullarına sahip İzmir ilinde bulunan bir eğitim binası incelenmiştir. Farklı cam türleri için farklı yönlerdeki pencere/duvar alanı oranı değişiminin enerji tüketimine olan etkisi, enerji analiz programı EnergyPlus kullanılarak karşılaştırılmıştır. Elde edilen simülasyon sonuçlarına göre binalarda pencere/duvar alanı oranı, yön ve cam tipinin enerji tüketimi üzerinde etkili olduğu görülmüştür. Farklı yönlerdeki pencere/duvar alanı oranının %10’dan %60’a artırılması durumunda ısıtma amaçlı enerji tüketimindeki azalma, güney cephedeki değişime bağlı olarak maksimum, doğu cephesinde ise minimum düzeydedir. Soğutma yükü açısından ise güney cephedeki değişimin yine en yüksek değere, kuzey cephedeki değişimin ise en düşük değere neden olduğu saptanmıştır. Toplam enerji tüketimi açısından (ısıtma + soğutma) doğu ve batı cephelerin en etkili, kuzey cephenin ise en az etkiye sahip olduğu hesaplanmıştır. Çift cam (mevcut) yerine low-e kaplamalı cam kullanıldığında ise yönlere göre sıralamanın değişmediği görülmüştür. Kısacası bina enerji performansına etkisi olan parametrelerin, mimari tasarım sürecinin erken aşamalarında veya mevcut binaların enerji etkin iyileştirilmelerinde, enerji analiz programları aracılığı ile değerlendirilmesi, enerji etkin çözüm önerilerinin oluşturulmasına önemli katkılar sağlayacaktır

    Impact of window-to-wall surface area for different window glass types and wall orientations on building Energy performance: A case study for a school building located in Izmir, Turkey

    No full text
    Binaların opak ve saydam yüzeyleri enerji kayıp ve kazançları açısından önemli bir role sahiptir. Binalarda, pencerelerden kaynaklanan güneş enerjisi kazanç ve ısı kayıp miktarları, pencere/duvar alanı oranı, cam tipi ve çerçeve gibi özelliklere bağlıdır. Enerji etkin tasarım bağlamında ısıtma ve soğutma amaçlı enerji tüketimine olan etkisi nedeni ile pencerelerden kazanılan güneş enerjisi ve kaybedilen ısı miktarının, erken tasarım aşamasında yerel iklim koşullarına göre analiz edilmesi gereklidir. Bu çalışmada, sıcak-nemli iklim koşullarına sahip İzmir ilinde bulunan bir eğitim binası incelenmiştir. Farklı cam türleri için farklı yönlerdeki pencere/duvar alanı oranı değişiminin enerji tüketimine olan etkisi, enerji analiz programı EnergyPlus kullanılarak karşılaştırılmıştır. Elde edilen simülasyon sonuçlarına göre binalarda pencere/duvar alanı oranı, yön ve cam tipinin enerji tüketimi üzerinde etkili olduğu görülmüştür. Farklı yönlerdeki pencere/duvar alanı oranının %10’dan %60’a artırılması durumunda ısıtma amaçlı enerji tüketimindeki azalma, güney cephedeki değişime bağlı olarak maksimum, doğu cephesinde ise minimum düzeydedir. Soğutma yükü açısından ise güney cephedeki değişimin yine en yüksek değere, kuzey cephedeki değişimin ise en düşük değere neden olduğu saptanmıştır. Toplam enerji tüketimi açısından (ısıtma + soğutma) doğu ve batı cephelerin en etkili, kuzey cephenin ise en az etkiye sahip olduğu hesaplanmıştır. Çift cam (mevcut) yerine low-e kaplamalı cam kullanıldığında ise yönlere göre sıralamanın değişmediği görülmüştür. Kısacası bina enerji performansına etkisi olan parametrelerin, mimari tasarım sürecinin erken aşamalarında veya mevcut binaların enerji etkin iyileştirilmelerinde, enerji analiz programları aracılığı ile değerlendirilmesi, enerji etkin çözüm önerilerinin oluşturulmasına önemli katkılar sağlayacaktır.The opaque and transparent surfaces of buildings have an important role in the total percentage of energy loss or gain. Heat loss or gain from windows are dependent on the window-towall area ratio, the window glass type, and the type of window frame used. in the concept of energy efficient design, heat loss or gain from windows should be analyzed in detail in the early stages of building design by considering local climatic conditions. This study investigates a school building located in Izmir in Turkey, a city with a hot and humid climate. Various glass types with different glazing characteristics and number of layers, located in different parts of the buildings and with different window-to-wall ratios are analyzed and compared using building the energy analysis program “EnergyPlus“. Results indicate that window- to-wall area ratios, wall orientation and glass types are important factors in the building‘s total energy consumption. When the window-to-wall area ratio is increased from 10% to 60%, the winter heating load of the building decreases in maximum amount on the south side of the building and reduces in minimum amount on the east side of the building. When summer cooling load is investigated the highest increase in energy consumption is found on the south side of the building. on the eastern and western sides of the building the effect of increased energy consumption value remains low. When the total energy consumption (cooling + heating) is considered, it is calculated that the east and west sides have the biggest total effect and the northern wall has the smallest total effect. When low emissivity glass is used instead of double layer glass, in terms of energy consumption the building side order of effect remains the same, although actual values differ. It is therefore clear that using energy analysis programs to analyse different factors within the energy consumption of buildings will be beneficial in creating energy efficient solutions. This can be carried out in the earlier stages of the architectural design of the buildings or at the renovation stages of existing buildings

    Applying underfloor heating system for improvement of thermal comfort in historic mosques: The case study of Salepçioǧlu Mosque, Izmir, Turkey

    Get PDF
    9th Mediterranean Conference of HVAC: Historical Buildings Retrofit in the Mediterranean Area, Climamed 2017; Matera; Italy; 12 May 2017 through 13 May 2017Mosques differ from other types of buildings by having an intermittent operation schedule. Due to five prayer times per day throughout the year, mosques are fully or partially, yet periodically, occupied. This paper examines the potential of using an underfloor heating system for improvement of indoor thermal comfort in a historic mosque, which is naturally ventilated, heated and cooled, based on adaptive thermal comfort method. The selected Salepçioǧlu Mosque, housing valuable wall paintings, was built in 1905 in KemeraltI, Izmir, Turkey. It requires specific attention with its cultural heritage value. Firstly, indoor microclimate of the Mosque was monitored for one-year period of 2014-15. Then, dynamic simulation modelling tool, DesignBuilder v.4.2 was used to create the physical model of the Mosque. The ASHRAE Guideline 14 indices were utilized to calibrate the model, by comparing simulated and measured indoor air temperature to achieve hourly errors within defined ranges. The results of calibrated baseline model indicate that the Mosque does not satisfy acceptable thermal comfort levels for winter months that provided by the adaptive method. Then, the effect of underfloor heating was examined in the second model by the
    corecore