24 research outputs found

    Capsaicin-Induced Ca2+ Influx and Constriction of the Middle Meningeal Artery

    Get PDF
    Research in the past on transient receptor potential cation channel subfamily V member 1 (TRPV1) has been limited to mainly nervous tissue TRPV1 because of the channel’s role in pain perception. Here, we studied the potential role of TRPV1 in vascular smooth muscle. We have observed that capsaicin, a TRPV1 agonist, induced constriction of the middle meningeal artery (MMA). Our goal was to decipher the mechanism of capsaicin-induced constriction of the MMA. Arterial diameter measurements showed that constriction due to 100 nM capsaicin (65.4% ± 3.7, n=7) was significantly diminished in the presence of the voltage-dependent calcium channel (VDCC) blocker 100 µM diltiazem (43.1% ± 8.1, n=7). Capsaicin-induced constriction was not significantly altered in the presence of the sarco/endoplasmic reticulum calcium transport ATPase (SERCA) inhibitor 30 µM cyclopiazonic acid (63.7 ± 9.0%, n=5) compared to control arteries (58.4 ± 8.6%, n=5). The unaltered capsaicin-induced constriction of the MMA in the presence of a SERCA inhibitor suggests that calcium-induced calcium release does not contribute to the overall calcium influx mechanism within the smooth muscle cells of the MMA. The diminished capsaicin-induced constriction of the MMA in the presence of a VDCC blocker suggests that sodium entry through TRPV1 channels can possibly lead to the membrane potential depolarization and increased activity of VDCCs causing further calcium influx. Furthermore, since the capsaicin effect was not abolished by the blockage of VDCCs, our data suggest that calcium entry through TRPV1 is sufficient to cause approximately 65% of the total constriction of the MMA in response to activation of TRPV1

    Ion Channels and Their Regulation in Vascular Smooth Muscle

    Get PDF
    Vascular smooth muscle excitability is exquisitely regulated by different ion channels that control membrane potential (Em) and the magnitude of intracellular calcium inside the cell to induce muscle relaxation or contraction, which significantly influences the microcirculation. Among them, various members of the K+ channel family, voltage-gated Ca2+ channels, and transient receptor potential (TRP) channels are fundamental for control of vascular smooth muscle excitability. These ion channels exist in complex with numerous signaling molecules and binding partners that modulate their function and, in doing so, impact vascular smooth muscle excitability. In this book chapter, we will review our current understanding of some of these ion channels and binding partners in vascular smooth muscle and discuss how their regulation is critical for proper control of (micro)vascular function

    Onset and Progression of Behavioral and Molecular Phenotypes in a Novel Congenic R6/2 Line Exhibiting Intergenerational CAG Repeat Stability

    Get PDF
    In the present study we report on the use of speed congenics to generate a C57BL/6J congenic line of HD-model R6/2 mice carrying 110 CAG repeats, which uniquely exhibits minimal intergenerational instability. We also report the first identification of the R6/2 transgene insertion site. The relatively stable line of 110 CAG R6/2 mice was characterized for the onset of behavioral impairments in motor, cognitive and psychiatric-related phenotypes as well as the progression of disease-related impairments from 4 to 10 weeks of age. 110Q mice exhibited many of the phenotypes commonly associated with the R6/2 model including reduced activity and impairments in rotarod performance. The onset of many of the phenotypes occurred around 6 weeks and was progressive across age. In addition, some phenotypes were observed in mice as early as 4 weeks of age. The present study also reports the onset and progression of changes in several molecular phenotypes in the novel R6/2 mice and the association of these changes with behavioral symptom onset and progression. Data from TR-FRET suggest an association of mutant protein state changes (soluble versus aggregated) in disease onset and progression

    Impaired BKCa channel function in native vascular smooth muscle from humans with type 2 diabetes

    Get PDF
    Large-conductance Ca2+-activated potassium (BKCa) channels are key determinants of vascular smooth muscle excitability. Impaired BKCa channel function through remodeling of BKCa beta 1 expression and function contributes to vascular complications in animal models of diabetes. Yet, whether similar alterations occur in native vascular smooth muscle from humans with type 2 diabetes is unclear. In this study, we evaluated BKCa function in vascular smooth muscle from small resistance adipose arteries of non-diabetic and clinically diagnosed type 2 diabetic patients. We found that BKCa channel activity opposes pressure-induced constriction in human small resistance adipose arteries, and this is compromised in arteries from diabetic patients. Consistent with impairment of BKCa channel function, the amplitude and frequency of spontaneous BKCa currents, but not Ca2+ sparks were lower in cells from diabetic patients. BKCa channels in diabetic cells exhibited reduced Ca2+ sensitivity, single-channel open probability and tamoxifen sensitivity. These effects were associated with decreased functional coupling between BKCa a and beta 1 subunits, but no change in total protein abundance. Overall, results suggest impairment in BKCa channel function in vascular smooth muscle from diabetic patients through unique mechanisms, which may contribute to vascular complications in humans with type 2 diabetes

    EM48 staining for aggregated mutant HTT appears to increase in amount and intensity with increasing age and disease progression.

    No full text
    <p>In 4 week old B6 110Q R6/2 mice, very few small, circular intranuclear inclusions characteristic of 110Q R6/2 mice can be identified. However, by 10 weeks of age such inclusions are readily observed neuronal nuclei. Intensity of EM48 staining appears increase from 4 and 10 weeks of age, further suggesting an increase in aggregate load.</p

    Mutant HTT protein progresses from soluble to aggregated forms with increasing age and disease progression.

    No full text
    <p>Relative levels of soluble and aggregated transgene protein across four ages. Soluble protein levels significantly decrease at every age. Aggregated protein levels increase at each age from 6 to 10 weeks. All p-values≤0.018 by one-way ANOVA.</p
    corecore