16 research outputs found

    Rol de la Nitrato Reductasa Periplásmica y el Óxido Nítrico en el metabolismo del Hierro y Formación de Biopelículas en Azospirillum brasilense

    Get PDF
    El género Azospirillum es conocido por su efecto de promoción del crecimiento vegetal y el incremento en los rendimientos de especies de interés agronómico. Numerosos estudios permitieron concluir que Azospirillum actúa influenciando la morfología, arquitectura y fisiología del sistema radical. Este efecto sobre las raíces esta dado principalmente por la capacidad de producción de fitohormonas. Sin embargo, en los últimos años han surgido a la luz nuevos factores involucrados en la interacción Azospirillum-planta. Entre estos podemos mencionar las poliaminas, el ácido absícico, el óxido nítrico (NO) y la producción de sideróforos. Frente a una deficiencia de hierro, tanto las plantas como los mamíferos, aumentan la concentración de NO, llevando a que éste desencadene una respuesta. En bacterias se conoce poco acerca del rol del NO en este aspecto. Por otro lado, para establecer una íntima relación con la planta, Azospirillum debe formar lo que se denomina una biopelícula sobre la raíz. En los últimos años se ha observado, en otros microorganismos, que el NO modula este proceso. En esta tesis se estudió el rol del NO y de la presencia de una nitrato reductasa periplásmica (Nap) funcional, la cual es parte de la vía de síntesis de NO, sobre los mecanismos de adquisición de hierro y formación de biopelículas en la bacteria promotora del crecimiento vegetal Azospirillum brasilenseSp245. Los resultados hallados permiten concluir que el NO modula ambos procesos y que además, la enzima Nap a través de su actividad de reducción de nitrato a nitrito ejerce un efecto de disipación de poder reductor, modulando también el metabolismo del hierro en esta bacteria.Fil: Arruebarrena Di Palma, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentin

    Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense

    Get PDF
    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed bio- films, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245.Fil: Arruebarrena Di Palma, Andrés. Universidad Nacional de Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pereyra, Cintia Mariana. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Moreno Ramírez, Lizbeth. Benemérita Universidad Autónoma de Puebla; MéxicoFil: Xiqui Vazquez, Maria L.. Benemérita Universidad Autónoma de Puebla; MéxicoFil: Baca, Beatriz E.. Benemérita Universidad Autónoma de Puebla; MéxicoFil: Pereyra, María Alejandra. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lamattina, Lamattina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Creus, Cecilia Mónica. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Fijación biológica del nitrógeno como estrategia alternativa a la producción industrial de fertilizantes nitrogenados

    Get PDF
    La creciente aplicación de fertilizantes nitrogenados es uno de los factores clave para responder a la demanda progresiva de alimentos a nivel mundial. La reciente diversificación de la agricultura para la producción de agrobiocombustibles ha incrementado la demanda de este insumo. El proceso industrial de Harber-Bosch constituye en la actualidad la principal fuente de fertilizantes nitrogenados y consume aproximadamente el 2% de la energía mundial. En contraposición con los beneficios que la síntesis química de fertilizantes ha representado para la Humanidad, su uso desmedido en los países más desarrollados y emergentes ocasiona una diversidad de efectos detrimentales para el medioambiente. Por otra parte, los países menos desarrollados tienen acceso restringido a este insumo y sufren la baja productividad de sus cultivos.El cultivo de microalgas representa una alternativa promisoria como complemento a la agricultura para la producción de alimentos, biocombustibles y biomateriales. Sin embargo, dado el alto contenido de nitrógeno de la biomasa algal, su cultivo masivo representaría una práctica inviable si no se contemplan alternativas a la aplicación convencional de fertilizantes.La fijación biológica del nitrógeno consiste en la biosíntesis de amonio a partir del nitrógeno del aire y representa una forma natural de fertilización nitrogenada. La aplicación de bioinoculantes conteniendo bacterias fijadoras de nitrógeno se viene utilizando exitosamente desde hace décadas en el cultivo de leguminosas. La gran especificidad de esta interacción planta-bacteria limita una mayor versatilidad de los inoculantes.En nuestro laboratorio desarrollamos prototipos de inoculantes bacterianos de amplio espectro. La mayor parte de los mismos utilizan a la bacteria modelo Azotobacter vinelandii, en la cual se combinan diferentes mutaciones por medio de herramientas de ingeniería genética que contribuyen a la desviación del flujo fisiológico del nitrógeno para optimizar la excreción de amonio como fertilizante nitrogenado de óptima calidad. Estas bacterias biofertilizantes permitieron el reemplazo de una parte sustancial del fertilizante químico cuando fueron introducidas en el cultivo de microlgas hiperproductoras de aceite, como materia prima para biodiesel. En estos modelos de sistemas productivos, la energía necesaria para la fijación del nitrógeno proviene de productos de desecho ricos en energía que producen las microalgas, estableciéndose una estrecha relación funcional entre el cultivo y el inoculante.Otro desarrollo del laboratorio consiste en la obtención a bajo costo y procesamiento de biomasa de cianobacterias fijadoras de nitrógeno para la producción de un biofertilizante nitrogenado natural, el cual mejoró el rendimiento de biomasa algal en relación a los fertilizantes convencionales.En el futuro inmediato el laboratorio se dispone a la optimización de estos inoculantes y a expandir su potencial campo de aplicación a otros cultivos, incluyendo plantas de interés agronómico.Fil: Ortiz Marquez, Juan César Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Arruebarrena Di Palma, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Ambrosio, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Inchaurrondo, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Curatti, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; Argentin

    Nitro-oleic acid triggers ROS production via NADPH oxidase activation in plants: A pharmacological approach

    Get PDF
    Nitrated fatty acids (NO2-FAs) are important signaling molecules in mammals. NO2-FAs are formed by the addition reaction of nitric oxide- and nitrite-derived nitrogen dioxide with unsaturated fatty acid double bonds. The study of NO2-FAs in plant systems constitutes an interesting and emerging area. The presence of NO2-FA has been reported in olives, peas, rice and Arabidopsis. To gain a better understanding of the role of NO2-FA on plant physiology, we analyzed the effects of exogenous application of nitro-oleic acid (NO2-OA). In tomato cell suspensions we found that NO2-OA induced reactive oxygen species (ROS) production in a dose-dependent manner via activation of NADPH oxidases, a mechanism that requires calcium entry from the extracellular compartment and protein kinase activation. In tomato and Arabidopsis leaves, NO2-OA treatments induced two waves of ROS production, resembling plant defense responses. Arabidopsis NADPH oxidase mutants showed that NADPH isoform D (RBOHD) was required for NO2-OA-induced ROS production. In addition, on Arabidopsis isolated epidermis, NO2-OA induced stomatal closure via RBOHD and F. Altogether, these results indicate that NO2-OA triggers NADPH oxidase activation revealing a new signaling role in plants.Fil: Arruebarrena Di Palma, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Di Fino, Luciano Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Salvatore, Sonia Rosana. University of Pittsburgh; Estados UnidosFil: D'Ambrosio, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Garcia-Mata, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Schopfer, Francisco Jose. University of Pittsburgh; Estados UnidosFil: Laxalt, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin

    Perspectivas para la utilización de la biomasa de cianobacterias fijadoras de nitrógeno como fertilizante orgánico y acondicionador de suelos

    Get PDF
    Introducción y Objetivos:El incremento de la población mundial genera una demanda creciente de alimentos, y para cubrir esta demanda, la utilización de mayores cantidades de fertilizantes, especialmente nitrogenados, ha sido una de las estrategias más utilizadas para incrementar los rendimientos de las cosechas. No obstante, el manejo inapropiado implica consecuencias perjudiciales para el medio ambiente y la salud humana. Promover la fijación biológica del nitrógeno (FBN) puede significar un aporte reduciendo la dependencia de fertilizantes nitrogenados, sin embargo, este proceso sólo podría cubrir una parte de la demanda requerida en la agricultura intensiva. La obtención de biomasa a partir de microorganismos que realicen la FBN para su utilización como biofertilizantes, es una alternativa promisoria especialmente si se puede acoplar al reciclado y mejoramiento de desechos agroindustriales. En este estudio se propone producir un biofertilizante orgánico y acondicionador de suelos, utilizando la biomasa de una cianobacteria fijadora de nitrógeno, obtenida a partir del reciclado y mejorado de la composición nutricional de un desecho agroindustrial.Materiales y Métodos:La cianobacteria fijadora de nitrógeno Nostoc sp. M2 se cultivó a partir de la vinasa residual de la fermentación alcohólica de un sacarificado de biomasa algal. Las deficiencias en nitrógeno y fósforo en la vinasa pudieron ser suplementadas mediante la FBN y el agregado de harina de hueso respectivamente. La biomasa obtenida fue desecada y molida para su análisis como fertilizante de plantas de interés agronómico en suelos con diferentes contenidos de materia orgánica y diferentes regímenes hídricos. Además, se evaluó la persistencia de nutrientes y capacidad de retención de agua.Resultados:El cultivo de Nostoc a partir de la vinasa alcanzó rendimientos similares a los obtenidos en medios de cultivo de referencia, y permitió la liberación de una considerable cantidad de expolisacáridos en el medio (superiores al 20% de la biomasa celular). La biomasa pudo sustituir la urea como fertilizante en suelos con bajo contenido de nutrientes, sosteniendo el crecimiento de plantas de trigo, maíz y poroto, especialmente en condiciones de riego esporádico. Adicionalmente, se comprobó que la liberación de nitrógeno de la biomasa es más lenta que la urea, mejorando el aprovechamiento del mismo. La aplicación de la biomasa en suelos proporciona una mayor capacidad de retención de agua, previniendo el marchitamiento en plantas de trigo y permitiendo que puedan soportar periodos de estrés hídrico en sequía.Conclusiones:Este estudio apoya la conveniencia de la producción de biomasa como biofertilizante de plantas y acondicionador de suelos, mejorando las condiciones del mismo especialmente en suelos pobres en materia orgánica y/o expuestos a condiciones de desecación o regímenes de precipitaciones semiáridas. A su vez, propone un procedimiento para reciclar y revalorizar desechos agroindustriales acoplándolo a plataformas de producción de microalgas y cianobacterias.Fil: Do Nascimento, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Battaglia, Marina Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Sánchez Rizza, Lara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Ambrosio, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Arruebarrena Di Palma, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Curatti, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaXIV Congreso Argentino de Microbiología General (SAMIGE) y XV Congreso Argentino de Microbiología (CAM)Ciudad Autónoma de Buenos AiresArgentinaSociedad Argentina de Microbiología GeneralAsociación Argentina de Microbiologí

    Nitro-Oleic Acid Induced Reactive Oxygen Species Formation and Plant Defense Signaling in Tomato Cell Suspensions

    Get PDF
    Nitrated fatty acids (NO2-FAs) are formed by the addition reaction of nitric oxide- and nitrite-derived nitrogen dioxide with unsaturated fatty acids. Nitrated fatty acids act as signaling molecules in mammals through the formation of covalent adducts with cellular thiols. The study of NO2-FAs in plant systems constitutes an interesting and emerging area. The presence of NO2-FA has been reported in olives, peas, rice and in Arabidopsis. To gain a better understanding of the role of NO2-FA on plant physiology, we analyzed the effects of exogenous application of nitro-oleic acid (NO2-OA) to tomato cell cultures. We found that NO2-OA induced reactive oxygen species (ROS) production in a dose-dependent manner via activation of NADPH oxidases, which requires calcium entry from the extracellular compartment and protein kinase activation, a mechanism that resembles the plant defense responses. NO2-OA-induced ROS production, expression of plant defense genes and led to cell death. The mechanism of action of NO2-OA involves a reduction in the glutathione cellular pool and covalently addition reactions with protein thiols and reduced glutathione. Altogether, these results indicate that NO2-OA triggers responses associated with plant defense, revealing its possible role as a signal molecule in biotic stress.Fil: Arruebarrena Di Palma, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Di Fino, Luciano Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Salvatore, Sonia Rosana. University of Pittsburgh; Estados UnidosFil: D'ambrosio, Juan Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Gergoff Grozeff, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Garcia-Mata, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Schopfer, Francisco Jose. University of Pittsburgh; Estados UnidosFil: Laxalt, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin

    Nitric Oxide as a signal molecule in intra- and extra-cellular bacteria-plant interactions

    No full text
    All plants live in intimate association with many microorganisms. These microorganisms colonize the surfaces, the intercellular spaces within tissues or even the inside of plant cells (Brencic and Winans, 2005). Some of the most complex interactions that terrestrial plants experience occur between the roots and their surrounding environment (Bais et al., 2006). It is precisely in the soil where these interactions are subjected to a plethora of conditions that determine the success or failure of root colonization, leading to effects on plant developmental processes. Soil has been divided into three main zones according proximity to the root: (1) rhizoplane or the root surface, (2) rhizosphere or the soil under root “influence,” and (3) bulk soil (Manthey et al., 1994). Bacteria that inhabit soils can affect plant growth and development. The interactions they establish with roots vary from beneficial, deleterious, or neutral effects on plants (Hirsch et al., 2003). The distribution of microorganisms in the rhizosphere can be classified into four main categories related to root proximity and intimacy: (1) bacteria living in the soil near roots, using metabolites “leaked” from roots as carbon (C) and N sources, (2) bacteria colonizing the rhizoplane, (3) bacteria residing in root tissue, inhabiting spaces between cortical cells, and (4) bacteria living inside cells in specialized root structures or nodules (Gray and Smith, 2005). The latter are generally represented by two groups: the legume-rhizobia and the woody plant- Frankia associations (Hallman et al., 1997; Gray et al., 2005). A more simple and convenient classification based on the preferred colonizing site is proposed by Gray and Smith (2005) dividing plant growth-promoting rhizobacteria (PGPR) into extracellular PGPR (ePGPR), and intracellular PGPR (iPGPR), the latter existing inside root cells generally in specialized nodular structures. classification based on the preferred colonizing site is proposed by Gray and Smith (2005) dividing plant growth-promoting rhizobacteria (PGPR) into extracellular PGPR (ePGPR), and intracellular PGPR (iPGPR), the latter existing inside root cells generally in specialized nodular structures. associations (Hallman et al., 1997; Gray et al., 2005). A more simple and convenient classification based on the preferred colonizing site is proposed by Gray and Smith (2005) dividing plant growth-promoting rhizobacteria (PGPR) into extracellular PGPR (ePGPR), and intracellular PGPR (iPGPR), the latter existing inside root cells generally in specialized nodular structures.Fil: Arruebarrena Di Palma, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Lamattina, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Creus, Cecilia Mónica. Universidad Nacional de Mar del Plata; Argentin

    Nitro-fatty acids: electrophilic signaling molecules in plant physiology

    Get PDF
    Main conclusion: Nitro fatty acids (NO2-FA)have relevant physiological roles as signaling molecules in biotic and abiotic stress, growth, and development, but the mechanism of action remains controversial. The two main mechanisms involving nitric oxide release and thiol modification are discussed. Abstract: Fatty acids (FAs) are major components of membranes and contribute to cellular energetic demands. Besides, FAs are precursors of signaling molecules, including oxylipins and other oxidized fatty acids derived from the activity of lipoxygenases. In addition, non-canonical modified fatty acids, such as nitro-fatty acids (NO2-FAs), are formed in animals and plants. The synthesis NO2-FAs involves a nitration reaction between unsaturated fatty acids and reactive nitrogen species (RNS). This review will focus on recent findings showing that, in plants, NO2-FAs such as nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) have relevant physiological roles as signaling molecules in biotic and abiotic stress, growth, and development. Moreover, since there is controversy on mechanisms of action of NO2-FAs as signaling molecules, we will provide evidence showing why this aspect needs further evaluation.Fil: Di Fino, Luciano Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Arruebarrena Di Palma, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Perk, Enzo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Garcia-Mata, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Schopfer, Francisco Jose. University of Pittsburgh; Estados UnidosFil: Laxalt, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin

    Prospects of using biomass of N2-fixing cyanobacteria as an organic fertilizer and soil conditioner

    No full text
    Increasing production of N-fertilizers is mandatory to support the expected demand of food over the next decades. While reduced access to N-fertilizers compromises food security in some regions of the world, incorrect management in other regions causes detrimental effects on the environment. Biological N2-fixation is a natural process for N-fertilization of plants in natural environments which could only be partially exploited in intensive agriculture. This is mainly because the current technology of crop inoculation with live microorganisms is often constrained by the inoculant's survival and propagation in the agricultural environment. In this study, we pursued a controlled eutrophication approach to recycling nutrients from agro-industrial runoffs for the production of an organic fertilizer and soil conditioner. Biomass of a N2-fixing cyanobacterium was obtained using a P-enriched fermentation vinasse as a sole source of macronutrients. The cyanobacterial biomass substituted for urea in wheat growth in artificial semi-arid soil, especially when sporadic watered simulating a semi-arid rainfall regime. Comparative analyses suggested a higher persistence of the organic fertilizer in the soil than an equivalent amount of urea. This study advocates the convenience of concentrating nutrients from industrial wastewater into biomass of N2-fixing cyanobacteria for their re-use in crop fertilization. It discusses the advantages of separating biological fertilizer production from crop cultivation in order to circumvent the odds of the microorganisms' acclimation to the agronomic conditions, and the techno-economic challenges towards maturation of the proposed technology.Fil: Do Nascimento, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Battaglia, Marina Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Sánchez Rizza, Lara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Ambrosio, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Arruebarrena Di Palma, Andrés. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Curatti, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; Argentin

    Detection of Nitric Oxide and Determination of Nitrite Concentrations in Arabidopsis thaliana and Azospirilum brasilense

    No full text
    There is now general agreement that nitric oxide (NO) is an important and almost ubiquitous signal in plants. Nevertheless, there are still many controversial observations and different opinions on the importance and functions of NO in plants. Partly, this may be due to the difficulties in detecting and even more in quantifying NO. Here, we summarize protocols for detecting NO and quantifying nitrite concentration in Arabidopisis seedlings and for the NO real time measurement in biofilms formed by the plant growth promoting rhizobacteria Azospirillum brasilense (A. brasilense). NO in oxygen-containing aqueous solution has a short half-life that is often attributed to a rapid oxidation to nitrite. Here we detail the use of the fluorescent probe DAF-FM DA and the electrochemical method for directly detecting and quantifying NO, respectively, and the Griess reagent to indirectly detect NO through its oxidized nitrite form. These protocols could be useful in a variety of cell types and different tissues of plants, and for microorganisms.Fil: Foresi, Noelia Pamela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Correa Aragunde, Maria Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Amenta, Melina Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Área de Investigación en Agronomía; Argentina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arruebarrena Di Palma, Andrés. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Área de Investigación en Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Creus, Cecilia Mónica. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Área de Investigación en Agronomía; ArgentinaFil: Lamattina, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin
    corecore