56 research outputs found

    Enhancement of CD4 and CD8 immunity by anti-CD137 (4-1BB) monoclonal antibodies during hepatitis C vaccination with recombinant adenovirus

    Get PDF
    The induction of protective or therapeutic cellular immunity against hepatitis C virus (HCV) is a difficult goal. In a previous work we showed that immunization with a recombinant adenovirus encoding HCV-NS3 (RAdNS3) could partially protect mice from challenge with a vaccinia virus encoding HCV antigens. We sought to investigate whether systemic administration of an immunostimulatory monoclonal antibody directed against the lymphocyte surface molecule CD137 could enhance the immunity elicited by RAdNS3. It was found that treatment with anti-CD137 mAb after the administration of a suboptimal dose of RAdNS3 enhanced cytotoxic and T helper cell responses against HCV NS3. Importantly, the ability of RAdNS3 to induce protective immunity against challenge with a recombinant vaccinia virus expressing HCV proteins was markedly augmented. Thus, combination of immunostimulatory anti-CD137 mAb with recombinant adenoviruses expressing HCV proteins might be useful in strategies of immunization against HCV

    CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination

    Get PDF
    CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses

    Bivalent therapeutic vaccine against HPV16/18 genotypes consisting of a fusion protein between the extra domain A from human fibronectin and HPV16/18 E7 viral antigens.

    Get PDF
    In vivo targeting of human papillomavirus (HPV) derived antigens to dendritic cells might constitute an efficient immunotherapeutic strategy against cervical cancer. In previous works, we have shown that the extra domain A from murine fibronectin (mEDA) can be used to target antigens to toll-like receptor 4 (TLR4) expressing dendritic cells and induce strong antigen-specific immune responses. In the present study, we have produced a bivalent therapeutic vaccine candidate consisting of the human EDA (hEDA) fused to E7 proteins from HPV16 and HPV18 (hEDA-HPVE7-16/18) and evaluate its potential as a therapeutic vaccine against cervical cancer. Recombinant fusion proteins containing HPV E7 proteins from HPV16 and HPV18 virus subtypes fused to hEDA were produced and tested in vitro on their capacity to bind TLR4 and induce the production of tumor necrosis factor-α or interleukin (IL)-12 by human monocytes and dendritic cells. The immunogenicity and potential therapeutic activity of the vaccine in combination with cisplatin or with the TLR3 agonist molecules polyinosinic-polycytidylic acid (Poly IC) or Poly ICLC was evaluated in mice bearing subcutaneous or genital orthotopic HPV16 TC-1 tumors. hEDA-HPVE7-16/18 prototype vaccine binds human TLR4 and stimulate TLR4-dependent signaling pathways and IL-12 production by human monocyte-derived dendritic cell. Vaccination with hEDA-HPVE7-16/18 induced strong HPVE7-specific Cytotoxic T lymphocyte (CTL) responses and eliminated established tumors in the TC-1-based tumor model. The antitumor efficacy was significantly improved by combining the fusion protein with cisplatin or with the TLR-3 ligand Poly IC and especially with the stabilized analog Poly ICLC. Moreover, hEDA-HPVE7-16/18+Poly ICLC induced full tumor regression in 100% of mice bearing orthotopic genital HPV tumors. Our results suggest that this therapeutic vaccine formulation may be an effective treatment for cervical tumors that do not respond to current therapies

    The immunotherapy potential of agonistic anti-CD137 (4-1BB) monoclonal antibodies for malignancies and chronic viral diseases

    Get PDF
    Pharmacological intervention on the immune system to achieve more intense lymphocyte responses has potential application in tumour immunology and in the treatment of chronic viral diseases. Immunostimulating monoclonal antibodies are defined as a new family of drugs that augment cellular immune responses. They interact as artificial ligands with functional proteins of the immune system, either activating or inhibiting their functions. There are humanized monoclonal antibodies directed to the inhibitory receptor CD152 (CTLA-4) that are being tested in clinical trials with evidence of antitumoural activity. As a drawback, anti-CTLA-4 monoclonal antibodies induce severe autoimmunity reactions in a fraction of the patients. Anti-CD137 monoclonal antibodies have the ability to induce potent immune responses mainly mediated by cytotoxic lymphocytes with the result of frequent complete tumour eradications in mice. Comparative studies in experimental models indicate that the antitumour activity of anti-CD137 monoclonal antibodies is superior to that of anti-CD152. CD137 (4-1BB) is a leukocyte differentiation antigen selectively expressed on the surface of activated T and NK lymphocytes, as well as on dendritic cells. Monoclonal antibodies acting as artificial stimulatory ligands of this receptor (anti-CD137 agonist antibodies) enhance cellular antitumoural and antiviral immunity in a variety of mouse models. Paradoxically, anti-CD137 monoclonal antibodies are therapeutic or preventive in the course of model autoimmune diseases in mice. In light of these experimental results, a number of research groups have humanized antibodies against human CD137 and early clinical trials are about to start

    T- and B-cell responses to multivalent prime-boost DNA and viral vectored vaccine combinations against hepatitis C virus in non-human primates.

    Get PDF
    Immune responses against multiple epitopes are required for the prevention of hepatitis C virus (HCV) infection, and the progression to phase I trials of candidates may be guided by comparative immunogenicity studies in non-human primates. Four vectors, DNA, SFV, human serotype 5 adenovirus (HuAd5) and Modified Vaccinia Ankara (MVA) poxvirus, all expressing hepatitis C virus Core, E1, E2 and NS3, were combined in three prime-boost regimen, and their ability to elicit immune responses against HCV antigens in rhesus macaques was explored and compared. All combinations induced specific T-cell immune responses, including high IFN-γ production. The group immunized with the SFV+MVA regimen elicited higher E2-specific responses as compared with the two other modalities, while animals receiving HuAd5 injections elicited lower IL-4 responses as compared with those receiving MVA. The IFN-γ responses to NS3 were remarkably similar between groups. Only the adenovirus induced envelope-specific antibody responses, but these failed to show neutralizing activity. Therefore, the two novel regimens failed to induce superior responses as compared with already existing HCV vaccine candidates. Differences were found in response to envelope proteins, but the relevance of these remain uncertain given the surprisingly poor correlation with immunogenicity data in chimpanzees, underlining the difficulty to predict efficacy from immunology studies.This work was supported by European Union contract QLK2-CT-1999- 00356, by the Biomedical Primate Research Centre, The Netherlands, and by the Swedish Research Council. We are grateful to Alexander van den Berg for technical assistance with the ICS, to our colleagues from Animal Science Department for technical assistance and expert care of the macaques, to the participants of the European HCVacc Cluster who provided help and support, and to Thomas Darton (Oxford Vaccine Group, UK) for input and advice on the manuscript. Christine Rollier is an Oxford Martin fellow and a Jenner Insitute Investigator.This is the author accepted manuscript. The final version is available from Nature Publishing Group at https://doi.org/10.1038/gt.2016.55

    A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo

    Get PDF
    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer

    Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses

    No full text
    Hepatitis C virus (HCV) chronic infection is characterized by low or undetectable cellular immune responses against HCV antigens. Some studies have suggested that HCV proteins manipulate the immune system by suppressing the specific antiviral T-cell immunity. We have previously reported that the expression of HCV core and E1 proteins (CE1) in dendritic cells (DC) impairs their ability to prime T cells in vitro. We show here that immunization of mice with immature DC transduced with an adenovirus encoding HCV core and E1 antigens (AdCE1) induced lower CD4(+)- and CD8(+)-T-cell responses than immunization with DC transduced with an adenovirus encoding NS3 (AdNS3). However, no differences in the strength of the immune response were detected when animals were immunized with mature DC subsequently transduced with AdCE1 or AdNS3. According to these findings, we observed that the expression of CE1 in DC inhibited the maturation caused by tumor necrosis factor alpha or CD40L but not that induced by lipopolysaccharide. Blockade of DC maturation by CE1 was manifested by a lower expression of maturation surface markers and was associated with a reduced ability of AdCE1-transduced DC to activate CD4(+)- and CD8(+)-T-cell responses in vivo. Our results suggest that HCV CE1 proteins modulate T-cell responses by decreasing the stimulatory ability of DC in vivo via inhibition of their physiological maturation pathways. These findings are relevant for the design of therapeutic vaccination strategies in HCV-infected patients

    CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination

    No full text
    CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses

    Enhancement of CD4 and CD8 immunity by anti-CD137 (4-1BB) monoclonal antibodies during hepatitis C vaccination with recombinant adenovirus

    No full text
    The induction of protective or therapeutic cellular immunity against hepatitis C virus (HCV) is a difficult goal. In a previous work we showed that immunization with a recombinant adenovirus encoding HCV-NS3 (RAdNS3) could partially protect mice from challenge with a vaccinia virus encoding HCV antigens. We sought to investigate whether systemic administration of an immunostimulatory monoclonal antibody directed against the lymphocyte surface molecule CD137 could enhance the immunity elicited by RAdNS3. It was found that treatment with anti-CD137 mAb after the administration of a suboptimal dose of RAdNS3 enhanced cytotoxic and T helper cell responses against HCV NS3. Importantly, the ability of RAdNS3 to induce protective immunity against challenge with a recombinant vaccinia virus expressing HCV proteins was markedly augmented. Thus, combination of immunostimulatory anti-CD137 mAb with recombinant adenoviruses expressing HCV proteins might be useful in strategies of immunization against HCV
    corecore