73 research outputs found

    Unraveling Medium-Range Order and Melting Mechanism of ZIF-4 under High Temperature

    Full text link
    Glass formation in Zeolitic Imidazolate Frameworks (ZIFs) has garnered significant attention in the field of Metal-Organic Frameworks (MOFs) in recent years. Numerous works have been conducted to investigate the microscopic mechanisms involved in the melting-quenching process of ZIFs. Understanding the density variations that occur during the melting process of ZIFs is crucial for comprehending the origins of glass formation. However, conducting large-scale simulations has been challenging due to limitations in computational resources. In this work, we utilized deep learning methods to accurately construct a potential function that describes the atomic-scale melting behavior of Zeolitic Imidazolate Framework-4 (ZIF-4). The results revealed the spatial heterogeneity associated with the formation of low-density phases during the melting process of ZIF-4. This work discusses the advantages and limitations of applying deep learning simulation methods to complex structures like ZIFs, providing valuable insights for the development of machine learning approaches in designing Metal-Organic Framework glasses.Comment: 32 pages, 6 figure

    THE EFFECT OF ADDITION GREEN INHIBITOR D-GALACTOSE ON CORROSION RATE OF ALUMINUM ALLOY 5052 IN SULFURIC ACID (H2SO4) MEDIA

    Get PDF
    Aluminum alloy 5052 (Al 5052) is one of the metals used as a bipolar plate in a Proton Exchange Membrane Fuel Cell (PEMFC) due to has its light mass and being easy to form, and, has high conductivity and resistivity properties. This material is prone to corrosion and current knowledge to protect its surface is currently lacking. The product of PEMFC produces electrical energy, hot steam (313 – 353 K), and water. These conditions have an impact on the degraded bipolar plate caused by the acidic nafion membrane. This increases the risk of corrosion on the cathode side of the bipolar plate. Coating with a green inhibitor using the electrophoretic deposition technique (EPD) is one way to deal with the corrosion that occurs. The analysis method used electrochemical with potentiodynamic polarization techniques, electrochemistry impedance spectroscopy (EIS), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In this study, green inhibitor D-galactose was used with a concentration of 0.5 – 1.5 g and an, EPD time of 15 – 45 minutes in 0.5 M sulfuric acid (H2SO4) media pH 1-4. Potentiodynamic polarization analysis at the lowest corrosion current value (Icorr) at demonstrates (the inhibitor concentration of 1.5 g with an and EPD time of 45 minutes) resulted corrosion rate of Al5052 before EPD was 0.0075 mmPY while the corrosion rate of Al5052 after EPD was 0.0041 mmPY with (inhibitors efficiency 45.2%). The FTIR spectrum, broad peak appeared in the range of 3000-3600 cm-1, which refers to the formation of hydrogen bonding of hydroxyl group. Methyl group of D-galactose also appear on 2918 cm-1 and 2850 cm-1 which attributed to =CH2 asymmetric stretch and −CH3 symmetric stretch, respectively. Carbonyl group on 1500 – 1700 cm-1 represent C=O bond of amide, and aldehyde. Peak 1097 – 1035 cm-1 which attributed to C-O were connected to the secondary and primary alcohols. The resistance value for Al5052 before and after EPD are 1.2 kΩ/cm2 after and 2.2 kΩ/cm2, respectively. Here we find that the resistance increases with the increasing concentration and time of EPD. The results cross section Al5052 within average 29.8 μm, and morphology with SEM Al5052 before EPD showed pitting corrosion. On the other hand, the image of Al5052 inhibitor coating 1.5 gr with EPD of 45 minutes shows a smooth surface and visible black lumps, suggesting Al5052 is successfully reduced a corrosion rate by the D-galactose. Our simple and robust method inferred a protection route towards a viable and physically stable green inhibitors

    Spectroscopic Contrast of Diarylethene Molecules on Octanethiol Monolayer

    Get PDF
    We present a systematic scanning tunneling microscopy (STM) study of bias-dependent imaging of disulfur diarylethene (2S-DE) molecules on octanethiol (C8) monolayer at room temperature. In a rigid confinement of the C8 matrix, we did not observe any significant variation in the appearance of the 2S-DE. On the contrary, a reversal in the apparent height of the 2S-DE was present when the molecule was situated on a gold vacancy island. We attributed this finding to the presence of a new electronic state that became accessible for a tunneling event. In addition, the C8 surface structure underwent a reversible phase transformation from root 3 x root 3 R30 degrees hexagonal to c(4x2) square superlattice when the bias voltage was reduced from -825 mV to -425 mV or vice versa. Under a finite bias voltage, an appreciable topographic variation of the 2S-DE signature was demonstrated for the first time. This finding can be ascribed to a finite overlap of the associated wave functions that occurred between the tip state and the 2S-DE molecular energy level. We believe that physical insight on the bias-dependent imaging of organic molecules on solid surface is important towards the advancement of molecular electronics-based devices

    Inorganic, Organic, and Perovskite Halides with Nanotechnology for High-Light Yield X- and γ-Ray Scintillators

    Get PDF
    Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3+ , Pr 3+ and Nd 3+ lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3+ doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators

    Lithium-Doped Two-Dimensional Perovskite Scintillator for Wide-Range Radiation Detection

    Get PDF
    Two-dimensional lead halide perovskites have demonstrated their potential as high-performance scintillators for X- and gamma-ray detection, while also being low-cost. Here we adopt lithium chemical doping in two-dimensional phenethylammonium lead bromide (PEA)2PbBr4 perovskite crystals to improve the properties and add functionalities with other radiation detections. Li doping is confirmed by X-ray photoemission spectroscopy and the scintillation mechanisms are explored via temperature dependent X-ray and thermoluminescence measurements. Our 1:1 Li-doped (PEA)2PbBr4 demonstrates a fast decay time of 11 ns (80%), a clear photopeak with an energy resolution of 12.4%, and a scintillation yield of 11,000 photons per MeV under 662 keV gamma-ray radiation. Additionally, our Li-doped crystal shows a clear alpha particle/gamma-ray discrimination and promising thermal neutron detection through 6Li enrichment. X-ray imaging pictures with (PEA)2PbBr4 are also presented. All results demonstrate the potential of Li-doped (PEA)2PbBr4 as a versatile scintillator covering a wide radiation energy range for various applications

    Combination of ozone-based advanced oxidation process and nanobubbles generation toward textile wastewater recovery

    Get PDF
    The intricate nature of various textile manufacturing processes introduces colored dyes, surfactants, and toxic chemicals that have been harmful to ecosystems in recent years. Here, a combination ozone-based advanced oxidation process (AOP) is coupled with a nanobubbles generator for the generation of ozone nanobubbles (NB) utilized the same to treat the primary effluent acquired from textile wastewaters. Here we find several key parameters such as chemical oxygen demand ammonia content (NH3), and total suspended solids indicating a substantial recovery in which the respective percentages of 81.1%, 30.81%, and 41.98%, upon 300 min residence time are achieved. On the other hand, the pH is shifted from 7.93 to 7.46, indicating the generation of hydrogen peroxide (H2O2) due to the termination reaction and the self-reaction of reactive oxygen species (ROS). We propose that the reactive oxygen species can be identified from the negative zeta potential measurement (−22.43 ± 0.34 mV) collected in the final state of treatment. The combined method has successfully generated ozone nanobubbles with 99.94% of size distributed in 216.9 nm. This highlights that enhancement of ozone’s reactivity plays a crucial role in improving the water quality of textile wastewater towards being technologically efficient to date
    corecore