12 research outputs found

    Telomere Length and the Risk of Alzheimer's Disease: The Rotterdam Study

    Get PDF
    There is a wide interest in biomarkers that capture the burden of detrimental factors as these accumulate with the passage of time, i.e., increasing age. Telomere length has received considerable attention as such a marker, because it is easily quantified and it may aid in disentangling the etiology of dementia or serve as predictive marker. We determined the association of telomere length with risk of Alzheimer's disease and all-cause dementia in a population-based setting. Within the Rotterdam Study, we performed quantitative PCR to measure mean leukocyte telomere length in blood. We determined the association of telomere length with risk of Alzheimer's disease until 2016, using Cox regression models. Of 1,961 participants (mean age 71.4±9.3 years, 57.1% women) with a median follow-up of 8.3 years, 237 individuals were diagnosed with Alzheimer's disease. We found a U-shaped associa

    Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk

    Get PDF
    In view of the interactions of vitamin D and the estrogen endocrine system, we studied the combined influence of polymorphisms in the estrogen receptor (ER) alpha gene and the vitamin D receptor (VDR) gene on the susceptibility to osteoporotic vertebral fractures in 634 women aged 55 yr and older. Three VDR haplotypes (1, 2, and 3) of the BsmI, ApaI, and TaqI restriction fragment length polymorphisms and three ERalpha haplotypes (1, 2, and 3) of the PvuII and XbaI restriction fragment length polymorphisms were identified. We captured 131 nonvertebral and 85 vertebral fracture cases during a mean follow-up period of 7 yr. ERalpha haplotype 1 was dose-dependently associated with increased vertebral fracture risk (P < 0.001) corresponding to an odds ratio of 1.9 [95% confidence interval (CI), 0.9-4.1] per copy of the risk allele. VDR haplotype 1 was overrepresented in vertebral fracture cases. There was a significant interaction (P = 0.01) between ERalpha haplotype 1 and VDR haplotype 1 in determining vertebral fracture risk. The association of ERalpha haplotype 1 with vertebral fracture risk was only present in homozygous carriers of VDR haplotype 1. The risk of fracture was 2.5 (95% CI, 0.6-9.9) for heterozygous and 10.3 (95% CI, 2.7-40) for homozygous carriers of ERalpha haplotype 1. These associations were independent of bone mineral density. In conclusion, interaction between ERalpha and VDR gene polymorphisms leads to increased risk of osteoporotic vertebral fractures in women, largely independent of bone mineral density

    Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk

    Get PDF
    In view of the interactions of vitamin D and the estrogen endocrine system, we studied the combined influence of polymorphisms in the estrogen receptor (ER) alpha gene and the vitamin D receptor (VDR) gene on the susceptibility to osteoporotic vertebral fractures in 634 women aged 55 yr and older. Three VDR haplotypes (1, 2, and 3) of the BsmI, ApaI, and TaqI restriction fragment length polymorphisms and three ERalpha haplotypes (1, 2, and 3) of the PvuII and XbaI restriction fragment length polymorphisms were identified. We captured 131 nonvertebral and 85 vertebral fracture cases during a mean follow-up period of 7 yr. ERalpha haplotype 1 was dose-dependently associated with increased vertebral fracture risk (P < 0.001) corresponding to an odds ratio of 1.9 [95% confidence interval (CI), 0.9-4.1] per copy of the risk allele. VDR haplotype 1 was overrepresented in vertebral fracture cases. There was a significant interaction (P = 0.01) between ERalpha haplotype 1 and VDR haplotype 1 in determining vertebral fracture risk. The association of ERalpha haplotype 1 with vertebral fracture risk was only present in homozygous carriers of VDR haplotype 1. The risk of fracture was 2.5 (95% CI, 0.6-9.9) for heterozygous and 10.3 (95% CI, 2.7-40) for homozygous carriers of ERalpha haplotype 1. These associations were independent of bone mineral density. In conclusion, interaction between ERalpha and VDR gene polymorphisms leads to increased risk of osteoporotic vertebral fractures in women, largely independent of bone mineral density

    Reduced penetrance of pathogenic ACMG variants in a deeply phenotyped cohort study and evaluation of ClinVar classification over time

    Get PDF
    Purpose: We studied the penetrance of pathogenically classified variants in an elderly Dutch population from the Rotterdam Study, for which deep phenotyping is available. We screened the 59 actionable genes for which reporting of known pathogenic variants was recommended by the American College of Medical Genetics and Genomics (ACMG), and demonstrate that determining what constitutes a known pathogenic variant can be quite challenging. Methods: We defined “known pathogenic” as classified pathogenic by both ClinVar and the Human Gene Mutation Database (HGMD). In 2628 individuals, we performed exome sequencing and identified known pathogenic variants. We investigated the clinical records of carriers and evaluated clinical events during 25 years of follow-up for evidence of variant pathogenicity. Results: Of 3815 variants detected in the 59 ACMG genes, 17 variants were considered known pathogenic. For 14/17 variants the ClinVar classification had changed over time. Of 24 confirmed carriers of these variants, we observed at least one clinical event possibly caused by the variant in only three participants (13%). Conclusion: We show that the definition of “known pathogenic” is often uncle

    Association of 5' estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk

    Get PDF
    This study investigates the influence of genetic variation of the estrogen receptor alpha (ESR1) gene locus on several bone parameters in 2042 individuals of The Rotterdam Study, a prospective population-based cohort study of elderly subjects. We analysed three polymorphic sites in the 5' region of the ESR1 gene; a (TA)(n)-repeat in the promoter region, and molecular haplotypes of the PvuII and XbaI RFLPs in intron 1, and inferred long-range haplotypes (LRH) thereof. We observed only three of the possible four PvuII-XbaI haplotypes in our population. A comparison with other Caucasian populations showed similar haplotype frequencies, while in Asian and African populations these were different. Linkage disequilibrium (LD) analysis between the PvuII-XbaI haplotype and the (TA)(n) repeat showed strong LD between the two sites. Reconstruction of long range haplotypes over the entire 5' region, revealed six frequent LRH. In men, we did not observe an association between the ESR1 polymorphisms studied

    Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    Get PDF
    Previously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA synthetase gene (LARS2), involved in aminoacylation of tRNA(Leu(UUR)), associate with type 2 diabetes. Direct sequencing of LARS2 cDNA from 25 type 2 diabetic subjects revealed eight single nucleotide polymorphisms. Two of the variants were examined in 7,836 subjects from four independent populations in the Netherlands and Denmark. A -109 g/a variant was not associated with type 2 diabetes. Allele frequencies for the other variant, H324Q, were 3.5% in type 2 diabetic and 2.7% in control subjects, respectively. The common odds ratio across all four studies was 1.40 (95% CI 1.12-1.76), P = 0.004. There were no significant differences in clinical variables between carriers and noncarriers. In this study, we provide evidence that the LARS2 gene may represent a novel type 2 diabetes susceptibility gene. The mechanism by which the H324Q variant enhances type 2 diabetes risk needs to be further established. This is the first report of association between an aminoacyl tRNA synthetase gene and disease. Our results further highlight the important role of mitochondria in glucose homeostasis

    Exome Sequencing Analysis Identifies Rare Variants in ATM and RPL8 That Are Associated With Shorter Telomere Length

    Get PDF
    Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∌82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (p-value < 1.42 × 10–7, minor allele frequency of 0.2–0.5%) in the ERF study. Eight of these variants (in C11orf65, ACAT1, NPAT, ATM, KDELC2, and EXPH5) were located on chromosome 11q22.3 that contains ATM, a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (p-value ≄ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in RPL8 (p-value = 1.48 × 10−6), which has previously been associated with age. Additionally, a novel rare variant in the known RTEL1 locus showed suggestive evidence for association (p-value = 1.18 × 10–4) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants

    Intestinal microbiome composition and its relation to joint pain and inflammation

    Get PDF
    Macrophage-mediated inflammation is thought to have a causal role in osteoarthritis-related pain and severity, and has been suggested to be triggered by endotoxins produced by the gastrointestinal microbiome. Here we investigate the relationship between joint pain and the gastrointestinal microbiome composition, and osteoarthritis-related knee pain in the Rotterdam Study; a large population based cohort study. We show that abundance of Streptococcus species is associated with increased knee pain, which we validate by absolute quantification of Streptococcus species. In addition, we replicate these results in 867 Caucasian adults of the Lifelines-DEEP study. Finally we show evidence that this association is driven by local inflammation in the knee joint. Our results indicate the microbiome is a possible therapeutic target for osteoarthritis-related knee pain

    Somatic TARDBP variants as a cause of semantic dementia

    Get PDF
    The aetiology of late-onset neurodegenerative diseases is largely unknown. Here we investigated whether de novo somatic variants for semantic dementia can be detected, thereby arguing for a more general role of somatic variants i

    Characteristics of de novo structural changes in the human genome

    Get PDF
    Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (120 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations
    corecore