8,958 research outputs found

    Implementation of higher-order absorbing boundary conditions for the Einstein equations

    Full text link
    We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition B_L of order L=l yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions B_L with L<l, which include the widely used freezing-Psi_0 boundary condition that imposes the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in Class. Quantum Grav

    Blackbody radiation shift in a 43Ca+ ion optical frequency standard

    Full text link
    Motivated by the prospect of an optical frequency standard based on 43Ca+, we calculate the blackbody radiation (BBR) shift of the 4s_1/2-3d_5/2 clock transition, which is a major component of the uncertainty budget. The calculations are based on the relativistic all-order single-double method where all single and double excitations of the Dirac-Fock wave function are included to all orders of perturbation theory. Additional calculations are conducted for the dominant contributions in order to evaluate some omitted high-order corrections and estimate the uncertainties of the final results. The BBR shift obtained for this transition is 0.38(1) Hz. The tensor polarizability of the 3d_5/2 level is also calculated and its uncertainty is evaluated as well. Our results are compared with other calculations.Comment: 4 page

    A speaker adaptive DNN training approach for speaker-independent acoustic inversion

    Get PDF
    We address the speaker-independent acoustic inversion (AI) problem, also referred to as acoustic-to-articulatory mapping. The scarce availability of multi-speaker articulatory data makes it difficult to learn a mapping which generalizes from a limited number of training speakers and reliably reconstructs the articulatory movements of unseen speakers. In this paper, we propose a Multi-task Learning (MTL)-based approach that explicitly separates the modeling of each training speaker AI peculiarities from the modeling of AI characteristics that are shared by all speakers. Our approach stems from the well known Regularized MTL approach and extends it to feed-forward deep neural networks (DNNs). Given multiple training speakers, we learn for each an acoustic-to-articulatory mapping represented by a DNN. Then, through an iterative procedure, we search for a canonical speaker-independent DNN that is "similar" to all speaker-dependent DNNs. The degree of similarity is controlled by a regularization parameter. We report experiments on the University of Wisconsin X-ray Microbeam Database under different training/testing experimental settings. The results obtained indicate that our MTL-trained canonical DNN largely outperforms a standardly trained (i.e., single task learning-based) speaker independent DNN

    Working with patients and the public to design an electronic health record interface: A qualitative mixed-methods study

    Get PDF
    Background Enabling patients to be active users of their own medical records may promote the delivery of safe, efficient care across settings. Patients are rarely involved in designing digital health record systems which may make them unsuitable for patient use. We aimed to develop an evidence-based electronic health record (EHR) interface and participatory design process by involving patients and the public. Methods Participants were recruited to multi-step workshops involving individual and group design activities. A mixture of quantitative and qualitative questionnaires and observational methods were used to collect participant perspectives on interface design and feedback on the workshop design process. Results 48 recruited participants identified several design principles and components of a patient-centred electronic medical record interface. Most participants indicated that an interactive timeline would be an appropriate way to depict a medical history. Several key principles and design components, including the use of specific colours and shapes for clinical events, were identified. Participants found the workshop design process utilised to be useful, interesting, enjoyable and beneficial to their understanding of the challenges of information exchange in healthcare. Conclusion Patients and the public should be involved in EHR interface design if these systems are to be suitable for use by patient-users. Workshops, as used in this study, can provide an engaging format for patient design input. Design principles and components highlighted in this study should be considered when patient-facing EHR design interfaces are being developed

    Assessing water circularity in cities: Methodological framework with a case study

    Get PDF
    With significant efforts made to consider water reuse in cities, a robust and replicable framework is needed to quantify the degree of urban water circularity and its impacts from a systems perspective. A quantitative urban water circularity framework can benchmark the progress and compare the impacts of water circularity policies across cities. In that pursuit, we bring together concepts of resource circularity and material flow analysis (MFA) to develop a demand- and discharge-driven water circularity assessment framework for cities. The framework integrates anthropogenic water flow data based on the water demand in an urban system and treated wastewater discharge for primary water demand substitution. Leveraging the water mass balance, we apply the framework in evaluating the state of water circularity in Singapore from 2015 to 2019. Overall, water circularity has been steadily increasing, with 24.9% of total water demand fulfilled by secondary flows in 2019, potentially reaching 39.6% at maximum water recycling capacity. Finally, we discuss the wider implications of water circularity assessments for energy, the environment, and urban water infrastructure and policy. Overall, this study provides a quantitative tool to assess the scale of water circularity within engineered urban water infrastructure and its application to develop macro-level water systems planning and policy insights

    Tripartite to Bipartite Entanglement Transformations and Polynomial Identity Testing

    Full text link
    We consider the problem of deciding if a given three-party entangled pure state can be converted, with a non-zero success probability, into a given two-party pure state through local quantum operations and classical communication. We show that this question is equivalent to the well-known computational problem of deciding if a multivariate polynomial is identically zero. Efficient randomized algorithms developed to study the latter can thus be applied to the question of tripartite to bipartite entanglement transformations

    Impact of a brief faculty training to improve patient-centered communication while using electronic health records

    Get PDF
    Objective Despite rapid EHR adoption, few faculty receive training in how to implement patient-centered communication skills while using computers in exam rooms. We piloted a patient-centered EHR use training to address this issue. Methods Faculty received four hours of training at Cleveland Clinic and a condensed 90-minute version at the University of Chicago. Both included a lecture and a Group-Objective Structured Clinical Exam (GOSCE) experience. Direct observations of 10 faculty in their clinical practices were performed pre- and post-workshop. Results Thirty participants (94%) completed a post-workshop evaluation assessing knowledge, attitude, and skills. Faculty reported that training was important, relevant, and should be required for all providers; no differences were found between longer versus shorter training. Participants in the longer training reported higher GOSCE efficacy, however shorter workshop participants agreed more with the statement that they had gained new knowledge. Faculty improved their patient-centered EHR use skills in clinical practice on post- versus pre-workshop ratings using a validated direct-observation rating tool. Conclusion A brief lecture and GOSCE can be effective in training busy faculty on patient-centered EHR use skills. Practice Implications Faculty training on patient-centered EHR skills can enhance patient-doctor communication and promotes positive role modeling of these skills to learners

    A Hypergraph Dictatorship Test with Perfect Completeness

    Full text link
    A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based \PCP construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1).o(1). Their test makes q3q\geq3 queries and has amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}) but has an inherent loss of perfect completeness. In this paper we give an adaptive hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}).Comment: Some minor correction

    Surface optical Raman modes in InN nanostructures

    Full text link
    Raman spectroscopic investigations are carried out on one-dimensional nanostructures of InN,such as nanowires and nanobelts synthesized by chemical vapor deposition. In addition to the optical phonons allowed by symmetry; A1, E1 and E2(high) modes, two additional Raman peaks are observed around 528 cm-1 and 560 cm-1 for these nanostructures. Calculations for the frequencies of surface optical (SO) phonon modes in InN nanostructures yield values close to those of the new Raman modes. A possible reason for large intensities for SO modes in these nanostructures is also discussed.Comment: 13 pages, 4 figures, Submitted in Journa

    Approximability of Capacitated Network Design

    Get PDF
    In the capacitated survivable network design problem (Cap- SNDP), we are given an undirected multi-graph where each edge has a capacity and a cost. The goal is to find a minimum cost subset of edges that satisfies a given set of pairwise minimum-cut requirements. Unlike its classical special case of SNDP when all capacities are unit, the approximability of Cap-SNDP is not well understood; even in very restricted settings no known algorithm achieves a o(m) approximation, where m is the number of edges in the graph. In this paper, we obtain several new results and insights into the approximability of Cap-SNDP. We give an O(log n) approximation for a special case of Cap-SNDP where the global minimum cut is required to be at least R, by rounding the natural cut-based LP relaxation strengthened with valid knapsackcover inequalities. We then show that as we move away from global connectivity, the single pair case (that is, when only one pair (s, t) has positive connectivity requirement) captures much of the difficulty of Cap-SNDP: even strengthened with KC inequalities, the LP has an Ω(n) integrality gap. Furthermore, in directed graphs, we show that single pair Cap-SNDP is 2log1−3 n-hard to approximate for any fixed constant δ \u3e 0. We also consider a variant of the Cap-SNDP in which multiple copies of an edge can be bought: we give an O(log k) approximation for this case, where k is the number of vertex pairs with non-zero connectivity requirement. This improves upon the previously known O(min{k, log Rmax})-approximation for this problem when the largest minimumcut requirement, namely Rmax, is large. On the other hand, we observe that the multiple copy version of Cap-SNDP is Ω(log log n)-hard to approximate even for the single-source version of the problem
    corecore