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Abstract
In the capacitated survivable network design problem (Cap- SNDP), we are given an undirected multi-graph
where each edge has a capacity and a cost. The goal is to find a minimum cost subset of edges that satisfies a
given set of pairwise minimum-cut requirements. Unlike its classical special case of SNDP when all capacities
are unit, the approximability of Cap-SNDP is not well understood; even in very restricted settings no known
algorithm achieves a o(m) approximation, where m is the number of edges in the graph. In this paper, we
obtain several new results and insights into the approximability of Cap-SNDP. We give an O(log n)
approximation for a special case of Cap-SNDP where the global minimum cut is required to be at least R, by
rounding the natural cut-based LP relaxation strengthened with valid knapsackcover inequalities. We then
show that as we move away from global connectivity, the single pair case (that is, when only one pair (s, t) has
positive connectivity requirement) captures much of the difficulty of Cap-SNDP: even strengthened with KC
inequalities, the LP has an Ω(n) integrality gap. Furthermore, in directed graphs, we show that single pair
Cap-SNDP is 2log1−3 n-hard to approximate for any fixed constant δ > 0. We also consider a variant of the
Cap-SNDP in which multiple copies of an edge can be bought: we give an O(log k) approximation for this
case, where k is the number of vertex pairs with non-zero connectivity requirement. This improves upon the
previously known O(min{k, log Rmax})-approximation for this problem when the largest minimumcut
requirement, namely Rmax, is large. On the other hand, we observe that the multiple copy version of Cap-
SNDP is Ω(log log n)-hard to approximate even for the single-source version of the problem.
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Abstract. In the capacitated survivable network design problem (Cap-
SNDP), we are given an undirected multi-graph where each edge has
a capacity and a cost. The goal is to find a minimum cost subset of
edges that satisfies a given set of pairwise minimum-cut requirements.
Unlike its classical special case of SNDP when all capacities are unit,
the approximability of Cap-SNDP is not well understood; even in very
restricted settings no known algorithm achieves a o(m) approximation,
where m is the number of edges in the graph. In this paper, we obtain
several new results and insights into the approximability of Cap-SNDP.

We give an O(log n) approximation for a special case of Cap-SNDP
where the global minimum cut is required to be at least R, by rounding
the natural cut-based LP relaxation strengthened with valid knapsack-
cover inequalities. We then show that as we move away from global con-
nectivity, the single pair case (that is, when only one pair (s, t) has
positive connectivity requirement) captures much of the difficulty of
Cap-SNDP: even strengthened with KC inequalities, the LP has an Ω(n)
integrality gap. Furthermore, in directed graphs, we show that single pair

Cap-SNDP is 2log1−δ n-hard to approximate for any fixed constant δ > 0.
We also consider a variant of the Cap-SNDP in which multiple copies

of an edge can be bought: we give an O(log k) approximation for this
case, where k is the number of vertex pairs with non-zero connectiv-
ity requirement. This improves upon the previously known O(min{k,
log Rmax})-approximation for this problem when the largest minimum-
cut requirement, namely Rmax, is large. On the other hand, we observe
that the multiple copy version of Cap-SNDP is Ω(log log n)-hard to ap-
proximate even for the single-source version of the problem.
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1 Introduction

In this paper we consider the capacitated survivable network design problem
(Cap-SNDP). The input consists of an undirected n-vertex multi-graph G(V, E)
and an integer requirement Rij for each unordered pair of nodes (i, j). Each edge
e of G has a cost c(e) and an integer capacity u(e). The goal is to find a minimum-
cost subgraph H of G such that for each pair of nodes i, j the capacity of the
minimum-cut between i and j in H is at least Rij . This generalizes the well-
known survivable network design problem (SNDP) problem in which all edge
capacities are 1. SNDP already captures as special cases several fundamental
connectivity problems in combinatorial optimization such as the min-cost span-
ning tree, min-cost Steiner tree and forest, as well as min-cost λ-edge-connected
subgraph; each of these problems has been extensively studied on its own and
several of these special cases are NP-hard and APX-hard to approximate. Jain, in
an influential paper [16], obtained a 2-approximation for SNDP via the standard
cut-based LP relaxation using the iterated rounding technique.

Although the above mentioned 2-approximation for SNDP has been known
since 1998, the approximability of Cap-SNDP has essentially been wide open
even in very restricted special cases. Similar to SNDP, Cap-SNDP is motivated
by both practial and theoretical considerations. These problems find applications
in the design of resilient networks such as in telecommunication infrastructure.
In such networks it is often quite common to have equipment with different
discrete capacities; this leads naturally to design problems such as Cap-SNDP.
At the outset, we mention that a different and somewhat related problem is also
referred to by the same name, especially in the operations research literature. In
this version the subgraph H has to support simultaneously a flow of Rij between
each pair of nodes (i, j); this is more closely related to buy-at-bulk network
design [8] and the fixed-charge network flow problems [15]. Our version is more
related to connectivity problems such as SNDP.

As far as we are aware, the version of Cap-SNDP that we study was intro-
duced (in the approximation algorithms literature) by Goemans et al. [14] in
conjunction with their work on SNDP. They made several observations on Cap-
SNDP: (i) Cap-SNDP reduces to SNDP if all capacities are the same, (ii) there
is an O(min(m, Rmax)) approximation where m is the number of edges in G and
Rmax = maxij Rij is the maximum requirement, and (iii) if multiple copies of
an edge are allowed then there is an O(log Rmax)-approximation. We note that
in the capacitated case Rmax can be exponentially large in n, the number of
nodes of the graph. Carr et al. [6] observed that the natural cut-based LP re-
laxation has an unbounded integrality gap even for the graph consisting of only
two nodes s, t connected by parallel edges with different capacities. Motivated
by this observation and the goal of obtaining improved approximation ratios for
Cap-SNDP, [6] strengthened the basic cut-based LP by using knapsack-cover
inequalities. (Several subsequent papers in approximation algorithms have fruit-
fully used these inequalities.) Using these inequalities, [6] obtained a β(G) + 1
approximation for Cap-SNDP where β(G) is the maximum cardinality of a bond
in the underlying simple graph: a bond is a minimal set of edges that separates
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some pair of vertices with positive demand. Although β(G) could be Θ(n2) in
general, this approach gives constant factor approximations for certain topologies
of the underlying graph — for instance, a line or a cycle.

The above results naturally lead to several questions. What is the approxima-
bility of Cap-SNDP? Should we expect a poly-logarithmic approximation or even
a constant factor approximation? If not, what are interesting and useful special
cases to consider? And do the knapsack cover inequalities help in the general
case? What is the approximability of Cap-SNDP if one allows multiple copies?
Does this relaxed version of the problem allow a constant factor approximation?

In this paper we obtain several new positive and negative results for Cap-
SNDP that provide new insights into the questions above.

1.1 Our Results

We first discuss results for Cap-SNDP where multiple copies are not allowed. We
initiate our study by considering the global connectivity version of Cap-SNDP
where we want a min-cost subgraph with global min-cut at least R; in other
words, there is a “uniform” requirement Rij = R for all pairs (i, j). We refer
to this as the Cap-R-Connected Subgraph problem; the special case when all
capacities are unit corresponds to the classical minimum cost λ-edge-connected
(spanning) subgraph problem, which is known to be APX-hard [12]. We show
the following positive result for arbitrary capacities.

Theorem 1. There is a randomized O(log n)-approximation algorithm for the
Cap-R-Connected Subgraph problem.

To prove Theorem 1, we begin with a natural LP relaxation for the problem.
Almost all positive results previously obtained for the unit capacity case are
based on this relaxation. As remarked already, this LP has an unbounded inte-
grality gap even for a graph with two nodes (and hence for Cap-R-Connected
Subgraph). We strengthen the relaxation by adding the valid knapsack cover
inequalities. Following [6], we find a violated inequality only if the current frac-
tional solution does not satisfy certain useful properties. Our main technical
tool both for finding a violated inequality and rounding the fractional solution
is Karger’s theorem on the number of small cuts in undirected graphs [17].

Our approach outlined above may be useful in other network design applica-
tions. As a concrete illustration, we use it to solve an interesting and natural
generalization of Cap-R-Connected Subgraph, namely, the k-Way–R-Connected
Subgraph problem. The input consists of (k−1) integer requirements R1, . . . Rk−1,
such that R1 ≤ R2 ≤ . . . ≤ Rk−1. The goal is to find a minimum-cost subgraph
H of G such that for each 1 ≤ i ≤ k − 1, the capacity of any (i + 1)-way
cut of G is at least Ri.That is, the minimum capacity of edges that need to
be removed from H to form (i + 1) disconnected components must be at least
Ri. Note that Cap-R-Connected Subgraph is precisely the k-Way–R-Connected
Subgraph, with k = 2, and that the k-Way–R-Connected Subgraph problem
is not a special case of the general Cap-SNDP as the cut requirements for the
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former problem are not expressible as pairwise connectivity constraints. Interest-
ingly, our techniques for Cap-R-Connected Subgraph can be naturally extended
to handle the multiway cut requirements, yielding the following generalization
of Theorem 1. Furthermore, no better result is known for this problem even in
the unit capacity case.

Theorem 2. There is a randomized O(k log n)-approximation algorithm for the
k-Way–R-Connected Subgraph problem with nO(k) running time.

Once the pairwise connectivity requirements are allowed to vary arbitrarily, the
Cap-SNDP problem seems to become distinctly harder. Surprisingly, the diffi-
culty of the general case starts to manifest even for the simplest representative
problem in this setting, where there is only one pair (s, t) with Rst > 0; we
refer to this as the single pair problem. The only known positive result for this
seemingly restricted case is a polynomial-factor approximation that follows from
the results in [14,6] for general Cap-SNDP. We give several negative results to
suggest that this special case may capture the essential difficulty of Cap-SNDP.
First, we show that the single pair problem is Ω(log log n)-hard to approximate.

Theorem 3. The single pair Cap-SNDP problem cannot be approximated to a
factor better than Ω(log log n) unless NP ⊆ DTIME(nlog log log n).

The above theorem is a corollary of the results in Chuzhoy et al. ’s work on the
hardness of related network design problems [9]. We state it as a theorem to
highlight the status of the problem, and defer the proof to the full version [5].

Note that the hardness result above does not rule out a logarithmic/poly-
logarithmic approximation, and one might hope to obtain such a result via the
LP, strengthened with knapsack cover inequalities. Unfortunately, Carr et al.
[6] showed that the strengthened LP has integrality gap at least "β(G)/2# + 1.
Thus, new algorithmic techniques are necessary to tackle this problem.

We prove a much stronger negative result for the single pair problem in di-
rected graphs. Since in the unit-capacity case, polynomial-time minimum-cost
flow algorithms solve the single-pair problem exactly even in directed graphs,
the hardness result below shows a stark contrast between the unit-capacity and
the non-unit capacity cases.

Theorem 4. In directed graphs, the single pair Cap-SNDP cannot be approx-
imated to a factor better than 2log(1−δ) n for any 0 < δ < 1, unless NP ⊆
DTIME(npolylog(n)). Moreover, this hardness holds for instances in which there
are only two distinct edge capacities.

Allowing Multiple Copies: Given the negative results above for even the special
case of the single-pair Cap-SNDP, it is natural to consider the relaxed version
of the problem where multiple copies of an edge can be chosen. Specifically, for
any integer α ≥ 0, α copies of e can be bought at a cost of α · c(e) to obtain
a capacity α · u(e). In some applications, such as in telecommunication net-
works, this is a reasonable model. As we discussed, this model was considered by
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Goemans et al. [14] who gave an O(log Rmax) approximation for Cap-SNDP.
One can easily obtain an O(k) approximation by taking edges on a single path
multiple times for each pair, where k is the number of pairs with Rij > 0. When
Rmax is large, we improve the min{O(k), O(log Rmax)}-approximation discussed
above via the following.

Theorem 5. In undirected graphs, there is an O(log k)-approximation algo-
rithm for Cap-SNDP with multiple copies, where k is the number of pairs with
Rij > 0.

Both our algorithm and analysis are inspired by the O(log k)-competitive online
algorithm for the Steiner forest problem by Berman and Coulston [4], and the
subsequent adaptation of these ideas for the priority Steiner forest problem by
Charikar et al. [7]. We complement our algorithmic result by showing that the
multiple copy version is Ω(log log n)-hard to approximate. This hardness holds
even for the single-source Cap-SNDP where we are given a source node s ∈ V ,
and a set of terminals T ⊆ V , such that Rij > 0 iff i = s and j ∈ T . The
following theorem, like Theorem 3, also follows easily from the results of [9].

Theorem 6. Single source Cap-SNDP with multiple copies cannot be approxi-
mated to a factor better than Ω(log log n) unless NP ⊆ DTIME(nlog log log n).

Related Work: Network design has a large literature in a variety of areas
including computer science and operations research. Practical and theoretical
considerations have resulted in numerous models and results. Due to space con-
siderations it is infeasible even to give a good overview of closely related work. We
briefly mention some work that allows the reader to compare the model we con-
sider here to related models. As we mentioned earlier, our version of Cap-SNDP
is a direct generalization of SNDP and hence is concerned with (capacitated)
connectivity between request node pairs. We refer the reader to the survey [18]
and some recent and previous papers [14,16,13,10,11,20] for pointers to literature
on network design for connectivity.

A different model arises if one wishes to find a min-cost subgraph that supports
multicommodity flow for the request pairs; in this model each node pair (i, j)
needs to routes a flow of Rij in the chosen graph and these flows simultaneously
share the capacity of the graph. We refer to this problem as Capacitated Multi-
commodity Flow (Cap-MF). Several variants of Cap-MF have been considered:
If multiple copies of an edge are allowed, Cap-MF is essentially equivalent to
the non-uniform buy-at-bulk network design problem [8]. Buy-at-bulk problems
have received substantial attention; we refer the reader to [8] for several pointers
to this work. If multiple copies of an edge are not allowed, the approximability
of Cap-MF is not well-understood; for example if the flow for each pair is only
allowed to be routed on a single path, then even checking feasibility of a given
subgraph is NP-Hard since the problem captures the well-known edge-disjoint
paths and unsplittable flow problems. Very recently, Andrews, Antonakopoulos
and Zhang [1] (among other results) considered the special case of Cap-MF in
which the capacities of all edges are identical; they obtained a poly-logarithmic
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approximation, while allowing poly-logarithmic congestion. (That is, they ob-
tain a bi-criteria approximation, as they may use a poly-logarithmic number of
copies of an edge.) When edge capacities are non-uniform, the techniques of [1]
do not extend even to the single pair setting, and they leave this as the main
open problem for future work. Note that in the single pair case, Cap-SNDP and
Cap-MF are identical; as discussed above, we believe that this problem captures
much of the difficulty of Cap-SNDP and Cap-MF.

The k-Way–R-Connected Subgraph problem that we consider does not appear
to have been considered previously even in the unit-capacity case.

2 The Cap-R-Connected Subgraph Problem

In this section, we prove Theorem 1, giving an O(log n)-approximation for the
Cap-R-Connected Subgraph problem. We start by writing a natural linear pro-
gram relaxation for the problem, and strengthening it using additional valid
inequalities, called the knapsack cover inequalities. We then show how to round
this strengthened LP, obtaining an O(log n)-approximation.

2.1 The Standard LP Relaxation and Knapsack-Cover Inequalities

We assume without any loss of generality that the capacity of any edge is at most
R. For each subset S ⊆ 2V , we use δ(S) to denote the set of edges with exactly
one endpoint in S. For a set of edges A, we use u(A) to denote

∑
e∈A u(e). We

say that a set of edges A satisfies (the cut induced by) S if u(A ∩ δ(S)) ≥ R.
Note that we wish to find the cheapest set of edges which satisfies every subset
∅ %= S ⊂ V . The following is the LP relaxation of the standard integer program
capturing the problem.

min
∑

e∈E

c(e)xe : ∀S ⊆ V,
∑

e∈δ(S)

u(e)xe ≥ R, ∀e ∈ E, 0 ≤ xe ≤ 1 (LP)

(LP) can have integrality gap as bad as R. Consider a graph G on three vertices
p, q, r. Edge pq has cost 0 and capacity R; edge qr has cost 0 and capacity R−1;
and edge pr has cost C and capacity R. To achieve a global min-cut of size at
least R, any integral solution must include edge pr, and hence must have cost
C. In contrast, in (LP) one can set xpr = 1/R, and obtain a total cost of C/R.

In the previous example, any integral solution in which the mincut separating
r from {p, q} has size at least R must include edge pr, even if qr is selected. The
following valid inequalities are introduced precisely to enforce this condition.
More generally, let S be a set of vertices, and A be an arbitrary set of edges.
Define R(S, A) = max{0, R − u(A ∩ δ(S))} be the residual requirement of S
that must be satisfied by edges in δ(S) \ A. That is, any feasible solution has∑

e∈δ(S)\A u(e)xe ≥ R(S, A). However, any integral solution also satisfies the
following stronger requirement

∑

e∈δ(S)\A

min{R(S, A), u(e)}xe ≥ R(S, A)
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and thus these inequalities can be added to the LP to strengthen it. These
additional inequalities are referred to as Knapsack-Cover inequalities, or simply
KC inequalities, and were first used by [6] in design of approximation algorithms
for Cap-SNDP.

Let (LP+KC) denote the standard LP strengthened with all the knapsack
cover inequalities.

min
∑

e∈E

c(e)xe : (LP) constraints, (LP+KC)

∀A ⊆ E, ∀S ⊆ V,
∑

e∈δ(S)\A

min(u(e), R(S, A))xe ≥ R(S, A) (KC-Inequalities)

The Linear Program (LP+KC), like the original (LP), has exponential size.
However, unlike the (LP), we do not know of the existence of an efficient sepa-
ration oracle for this. Nevertheless, as we show below, we do not need to solve
(LP+KC); it suffices to get to what we call a good fractional solution.

Definition 1. Given a fractional solution x, we say an edge e is nearly integral
if xe ≥ 1

40 log n , and we say e is highly fractional otherwise.

Definition 2. For any α ≥ 1, a cut in a graph G with capacities on edges, is
an α-mincut if its capacity is within a factor α of the minimum cut of G.

Theorem 7. [Theorems 4.7.6 and 4.7.7 of [17]] The number of α-mincuts in an
n-vertex graph is at most n2α. Moreover, the set of all α-mincuts can be found
in O(n2α log2 n) time with high probability.

Given a fractional solution x to the edges, we let Ax denote the set of nearly
integral edges, that is, Ax := {e ∈ E : xe ≥ 1

40 log n}. Define û(e) = u(e)xe to
be the fractional capacity on the edges. Let S := {S ⊆ V : û(δ(S)) ≤ 2R}. A
solution x is called good if it satisfies the following three conditions:

(a) The global mincut in G with capacity û is at least R, i.e. x satisfies the
original constraints.

(b) The KC inequalities are satisfied for the set Ax and the sets in S. Note that
if (a) is satisfied, then by Theorem 7, |S| ≤ n4.

(c)
∑

e∈E c(e)xe is at most the value of the optimum solution to (LP+KC).

Note that a good solution need not be feasible for (LP+KC) as it is satisfies only
a subset of KC-inequalities. We use the ellipsoid method to get such a solution.
Such a method was also used in [6], and we defer the details to the full version.

Lemma 1. There is a randomized algorithm that computes a good fractional
solution with high probability.



Approximability of Capacitated Network Design 85

2.2 The Rounding and Analysis

Given a good fractional solution x, we now round it to get a O(log n) approxima-
tion to the Cap-R-Connected Subgraph problem. A useful tool for our analysis
is the following Chernoff bound (see [19], for instance, for a proof):

Lemma 2. Let X1, X2, . . . Xk be a collection of independent random variables
in [0, 1], let X =

∑k
i=1 Xi, and let µ = E[X ]. The probability that X ≤ (1 − δ)µ

is at most e−µδ2/2.

We start by selecting Ax, the set of all nearly integral edges. Henceforth, we
lose the subscript and denote the set as simply A. Let F = E \ A denote the
set of all highly fractional edges; for each edge e ∈ F , select it with probability
(40 logn ·xe). Let F ∗ ⊆ F denote the set of selected highly fractional edges. The
algorithm returns the set of edges EA := A ∪ F ∗.

It is easy to see that the expected cost of this solution EA is O(log n)∑
e∈E c(e)xe, and hence by condition (c) above, within O(log n) times that of

the optimal integral solution. Thus, to prove Theorem 1, it suffices to prove that
with high probability, EA satisfies every cut in the graph G; we devote the rest
of the section to this proof. We do this by separately considering cuts of different
capacities, where the capacities are w.r.t û (recall that û(e) = u(e)xe). Let L be
the set of cuts of capacity at least 2R, that is, L := {S ⊆ V : û(δ(S)) > 2R}.

Lemma 3. Pr[ ∀S ∈ L : u(EA ∩ δ(S)) ≥ R] ≥ 1 − 1
2n10 .

Proof. We partition L into sets L2,L3, · · · where Lj := {S ⊆ V : jR <
û(δ(S)) ≤ (j + 1)R}. Note that Theorem 7 implies |Lj | ≤ n2(j+1) by condi-
tion (a) above. Fix j, and consider an arbitrary cut S ∈ Lj . If u(A∩ δ(S)) ≥ R,
then S is clearly satisfied by EA. Otherwise, since the total û-capacity of S is at
least jR, we have û(F ∩ δ(S)) ≥ û(δ(S)) − u(A ∩ δ(S)) ≥ (j − 1)R. Thus

∑

e∈F∩δ(S)

u(e)
R

xe ≥ (j − 1)

Recall that an edge e ∈ F is selected in F ∗ with probability (40 logn · xe).
Thus, for the cut S, the expected value of

∑
e∈F∗∩δ(S)

u(e)
R ≥ 40(j − 1) log n.

Since u(e)/R ≤ 1, we can apply Lemma 2 to get that the probability that S is
not satisfied is at most e−16 log n(j−1) = 1/n16(j−1). Applying the union bound,
the probability that there exists a cut in Lj not satisfied by EA is at most
n2(j+1)/n16(j−1) = n18−14j . Thus probability that some cut in L is not satisfied
is bounded by

∑
j≥2 n18−14j ≤ 2n−10 if n ≥ 2. Hence with probability at least

1 − 1/2n10, A ∪ F ∗ satisfies all cuts in L.

One might naturally attempt the same approach for the cuts in S (recall that
S = {S ⊆ V : û(δ(S)) ≤ 2R}) modified as follows. Consider any cut S, which is
partly satisfied by the nearly integral edges A. The fractional edges contribute
to the residual requirement of S, and since xe is scaled up for fractional edges by
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a factor of 40 logn, one might expect that F ∗ satisfies the residual requirement,
with the log n factor providing a high-probability guarantee. This intuition is
correct, but the KC inequalities are crucial. Consider Example 1; edge pr is
unlikely to be selected, even after scaling. In the statement of Lemma 2, it
is important that each random variable takes values in [0, 1]; thus, to use this
lemma, we need the expected capacity from fractional edges to be large compared
to the maximum capacity of an individual edge. But the KC inequalities, in which
edge capacities are “reduced”, enforce precisely this condition. Thus we get the
following lemma using a similar analysis as above.

Lemma 4. Pr[ ∀S ∈ S : u(δ(EA ∪ δ(S))) ≥ R] ≥ 1 − 1
n12 .

The O(log n)-approximation guarantee for the Cap-R-Connected Subgraph prob-
lem stated in Theorem 1 follows from the previous two lemmas.

2.3 The k-Way–R-Connected Subgraph Problem.

The k-Way–R-Connected Subgraph problem that we define is a natural general-
ization of the well-studied min-cost λ-edge-connected subgraph problem. The lat-
ter problem is motivated by applications to fault-tolerant network design where
any λ− 1 edge failures should not disconnect the graph. However, there may be
situations in which global λ-connectivity may be too expensive or infeasible. For
example the underlying graph G may have a single cut-edge but we still wish
a subgraph that is as close to 2-edge-connected as possible. We could model
the requirement by k-Way–R-Connected Subgraph (in the unit-capacity case)
by setting R1 = 1 and R2 = 3; that is, at least 3 edges have to be removed to
partition the graph into 3 disconnected pieces.

We briefly sketch the proof of Theorem 2. We work with a generalization
of (LP+KC) to i-way cuts, with an original constraint for each i + 1-way cut,
1 ≤ i ≤ k − 1, and with KC inequalities added. The algorithm is to select
all nearly integral edges e (those with xe ≥ 1

40k log n ), and select each of the
remaining (highly fractional) edges e with probability 40k log n ·xe. The analysis
is very similar to that of Theorem 1, but we use the following lemma on counting
k-way cuts in place of Theorem 7. For details, refer to the full version.

Lemma 5 (Lemma 11.2.1 of [17]). In an n-vertex undirected graph, the num-
ber of k-way cuts with capacity at most α times that of a minimum k-way cut is
at most n2α(k−1).

3 Single-Pair Cap-SNDP in Directed Graphs

In this section, we show that when the underlying graph is directed, single-pair
Cap-SNDP is hard to approximate to within a factor of 2log(1−δ) n for any δ > 0.
This proves Theorem 4; our proof proceeds via a reduction from the label cover
problem [3].
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Definition 3 (Label Cover Problem). The input consists of a bipartite graph
G(A ∪B, E) such that the degree of every vertex in A is dA and degree of every
vertex in B is dB, a set of labels LA and a set of labels LB, and a relation
π(a,b) ⊆ LA×LB for each edge (a, b) ∈ E. Given a labeling φ : A∪B → LA∪LB,
an edge e = (a, b) ∈ E is said to be consistent iff (φ(a), φ(b)) ∈ π(a,b). The goal
is to find a labeling that maximizes the fraction of consistent edges.

The following hardness result for the label-cover problem is a well-known con-
sequence of the PCP theorem [2] and Raz’s Parallel Repetition theorem [21].

Theorem 8 ([2,21]). For any ε > 0, there does not exist a poly-time algo-
rithm to decide if a given instance of label cover problem has a labeling where
all edges are consistent (Yes-Instance), or if no labeling can make at least
1
γ fraction of edges to be consistent for γ = 2log1−ε n (No-Instance), unless
NP ⊆ DTIME(npolylog(n)).

We now give a reduction from label cover to the single-pair Cap-SNDP in di-
rected graphs. In our reduction, the only non-zero capacity values will be 1, dA,
and dB. We note that Theorem 8 holds even when we restrict to instances with
dA = dB. Thus our hardness result will hold on single-pair Cap-SNDP instances
where there are only two distinct non-zero capacity values.

Given an instance I of the label cover problem with m edges, we create in
polynomial-time a directed instance I ′ of single-pair Cap-SNDP such that if I is
a Yes-Instance then I ′ has a solution of cost at most 2m, and otherwise, every
solution to I ′ has cost Ω(mγ

1
4 ). This establishes Theorem 4 when ε = δ/2.

The underlying graph G′(V ′, E′) for the single-pair Cap-SNDP instance is
constructed as follows. The set V ′ contains a vertex v for every v ∈ A ∪ B. We
slightly abuse notation and refer to these sets of vertices in V ′ as A and B as
well. Furthermore, for every vertex a ∈ A, and for every label ' ∈ LA, the set
V ′ contains a vertex a('). Similarly, for every vertex b ∈ B, and for every label
' ∈ LB, the set V ′ contains a vertex b('). Finally, V ′ contains a source vertex s
and a sink vertex t. The set E′ contains the following directed edges:

– For each vertex a in A, we have an arc (s, a) of cost 0 and capacity dA. For
each vertex b ∈ B, there is an arc (b, t) of cost 0 and capacity dB.

– For each vertex a ∈ A, and for all labels ' in LA, there is an arc (a, a(')) of
cost dA and capacity dA. For each vertex b ∈ B, and for all labels ' in LB,
there is an arc (b('), b) of cost dB and capacity dB.

– For every edge (a, b) ∈ E, and for every pair of labels ('a, 'b) ∈ π(a,b), there
is an arc (a('a), b('b)) of cost 0 and capacity 1.

This completes the description of the network G′. The requirement Rst between
s and t is m, the number of edges in the label cover instance. It is easy to verify
that the size of the graph G′ can be constructed in time polynomial in size of
G. The lemmas below analyze the cost of Yes-Instance and No-Instance
instances; the proofs are deferred to the full version due to space limitation.
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Lemma 6. If the label cover instance is a Yes-Instance, then G′ contains a
subgraph of cost 2m which can realize a flow of value m from s to t.

Lemma 7. If the label cover instance is a No-Instance, then any subgraph of
G′ that realizes a flow of m units from s to t has cost Ω(mγ

1
4 ).

Since the graph G′ can be constructed from G in poly-time, it follows that a
poly-time (γ1/4/5)-approximation algorithm for single-pair Cap-SNDP would
give a poly-time algorithm to decide whether a given instance of label cover is a
Yes-Instance or a No-Instance contradicting Theorem 8.

4 Cap-SNDP with Multiple Copies Allowed

We now consider the version of Cap-SNDP when multiple copies of any edge e
can be chosen. Our algorithm is inspired by the work of Berman and Coulston
[4] on online Steiner Forest. For notational convenience, we rename the pairs
(s1, t1), · · · , (sk, tk), and denote the requirement Rsi,ti as Ri; the vertices si, ti
are referred to as terminals. Order the pairs so that R1 ≥ R2 ≥ · · · ≥ Rk.

We start with the intuition. The algorithm considers the pairs in decreasing
order of requirements, and maintains a forest solution connecting the pairs that
have been already been processed; that is, if we retain a single copy of each edge
in the partial solution constructed so far, we obtain a forest F . For any edge
e on the path in F between sj and tj , the total capacity of copies of e will be
at least Rj . When considering si, ti, we connect them as cheaply as possible,
assuming that edges previously selected for F have 0 cost. (Note that this can
be done since we are processing the pairs in decreasing order of requirements
and for each edge already present in F , the capacity of its copies is at least Ri.)
The key step of the algorithm is that in addition to connecting si and ti, we
also connect the pair to certain other components of F that are “nearby”. The
cost of these additional connections can be bounded by the cost of the direct
connection costs between the pairs. These additional connections are useful in
allowing subsequent pairs of terminals to be connected cheaply. In particular,
they allow us to prove a O(log k) upper bound on the approximation factor.

We now describe the algorithm in more detail. The algorithm maintains a
forest F of edges that have already been bought; F satisfies the invariant that,
after iteration i−1, for each j ≤ i−1, F contains a unique path between sj and
tj . In iteration i, we consider the pair si, ti. We define the cost function ci(e)
as ci(e) := 0 for edges e already in F , and ci(e) := c(e) + Ri

u(e) c(e), for edges
e /∈ F . Note that for an edge e /∈ F , the cost ci(e) is sufficient to buy enough
copies of e to achieve a total capacity of Ri. Thus it suffices to connect si and
ti and pay cost ci(e) for each edge; in the Cap-SNDP solution we would pay at
most this cost and get a feasible solution. However, recall that our algorithm
also connects si and ti to other “close by” components; to describe this process,
we introduce some notation: For any vertices p and q, we use di(p, q) to denote
the distance between p and q according to the metric given by edge costs ci(e).
We let #i := di(si, ti) be the cost required to connect si and ti, given the current
solution F . We also define the class of a pair (sj , tj), and of a component:
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– For each j ≤ i, we say that pair (sj , tj) is in class h if 2h ≤ !j < 2h+1.
Equivalently, class(j) = "log !j#.

– For each connected component X of F , class(X) = max(sj ,tj)∈X class(j).

Now, the algorithm connects si (respectively ti) to component X if di(si, X)
(resp. di(ti, X)) ≤ 2min{class(i),class(X)}. That is, if X is close to the pair (si, ti)
compared to the classes they are in, we connect X to the pair. As we show in
the analysis, this extra connection cost can be charged to some pair (sj , tj) in
the component X . The complete algorithm description is given below, and this
algorithm gives a O(log k) approximation, proving Theorem 5. The proof can be
found in the full version.

Cap-SNDP-MC:
F ← ∅ 〈〈F is the forest solution returned〉〉
For i ← 1 to k
For each edge e ∈ F , ci(e) ← 0
For each edge e &∈ F , ci(e) ← c(e) + (Ri/u(e))c(e)
!i ← di(si, ti)
Add to F a shortest path (of length !i) from si to ti under distances ci(e)
class(i) ← 'log !i(
For each connected component X of F

If di(si, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting si and X
For each connected component X of F

If di(ti, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting ti and X
Buy *Ri/ue+ copies of each edge e added during this iteration.

5 Conclusions

In this paper we make progress on addressing the approximability of Cap-
SNDP. We gave an O(log n) approximation for the Cap-R-Connected Subgraph
problem, which is a capacitated generalization of the well-studied min-cost λ-
edge-connected subgraph problem. Can we improve this to obtain an O(1) ap-
proximation or prove super-constant factor hardness of approximation? We also
highlight the difficulty of Cap-SNDP by focusing on the single pair problem and
show hardness results. We believe that understanding the single pair problem is
a key step to understanding the general case. In particular, we do not have a
non-trivial algorithm even for instances in which the edge capacities are either 1
or U ; this appears to capture much of the difficulty of the general problem. As we
noted, allowing multiple copies of edges makes the problem easier; in practice,
however, it may be desirable to not allow too many copies of an edge to be used.
It is therefore of interest to examine the approximability of Cap-SNDP if we allow
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only a small number of copies of an edge. Does the problem admit a non-trivial
approximation if we allow O(1) copies or, say, O(log n) copies? This investigation
may further serve to delineate the easy versus difficult cases of Cap-SNDP.
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