493 research outputs found
The role of mast cells on angiogenesis in oral squamous cell carcinoma
Objective: Angiogenesis or neovascularization has long been known to aid in progression and metastasis of malignant tumors. Tumor angiogenesis is a complex event mediated by angiogenic factors released from cancer cells and or by host immune cells. Mast cells may induce tumor progression and potentiate metastasis by stimulating angiogenesis. The purpose of the present study was to validate topographic distribution of micro vessel density (MVD) and mast cell density (MCD) and help to elucidate the possible role of mast cells in tumor angiogenesis and correlating this with advanced disease parameters. Study Design: MVD and MCD were investigated in tumor specimens from 30 patients diagnosed with different histologic grades of oral squamous cell carcinoma (OSCC). Intratumor vessels were stained with collagen Type IV antibody and mast cells with Toluidine blue before being measured by light microscopy. Results: There was a significant correlation between MVD and disease progression and number of blood vessels increased from well to poorly differentiated OSCC where as MCD decreased. Conclusions: These findings suggest that angiogenesis indeed occur in OSCC and might be used as an index to inflect the aggression of the disease however mast cells make up only a part of complex process of angiogenesis along with other factors secreted by tumor. © Medicina Oral S. L
The presence of tumour-associated lymphocytes confers a good prognosis in pancreatic ductal adenocarcinoma: an immunohistochemical study of tissue microarrays
Background
Tumour-associated lymphocytes (TALs) have been linked with good prognosis in several solid tumours. This study aimed to evaluate the prognostic significance of CD3, CD8 and CD20 positive lymphocytes in pancreatic ductal adenocarcinoma.
Methods
After histological re-evaluation of the tumours of 81 patients who underwent surgical resection for exclusively pancreatic ductal adenocarcinoma, tissue micro-arrays (TMA) were constructed and immunohistochemistry was performed for CD3, CD8 and CD20. The number of lymphocytes within specific tumour compartments (i.e. stromal and intratumoural) was quantified. X-tile software (Yale School of Medicine, CT, USA) was used to stratify patients into 'high’ and 'low’ for each of the lymphocytes stained and their association with survival. Receiver operating curves (ROC) were constructed to evaluate the association between the TALs, alone and in combination, with clinicopathological features.
Results
CD3 and CD8 positive lymphocytes were associated with grade of tumour differentiation. The presence of intratumoural CD3 positive cells was associated with improved survival (p = 0.028), and intratumoural and stromal CD3 in combination also correlated with improved survival (p = 0.043). When CD20 positive lymphocyte levels were high, survival improved (p = 0.029) and similar results were seen for CD20 in combination with intratumoural CD3 (p = 0.001) and stromal CD8 (p = 0.013).
Conclusions
This study has shown a correlation between the presence of TALs and survival in pancreatic ductal adenocarcinoma
The Flagellum of Pseudomonas aeruginosa Is Required for Resistance to Clearance by Surfactant Protein A
Surfactant protein A (SP-A) is an important lung innate immune protein that kills microbial pathogens by opsonization and membrane permeabilization. We investigated the basis of SP-A-mediated pulmonary clearance of Pseudomonas aeruginosa using genetically-engineered SP-A mice and a library of signature-tagged P. aeruginosa mutants. A mutant with an insertion into flgE, the gene that encodes flagellar hook protein, was preferentially cleared by the SP-A(+/+) mice, but survived in the SP-A(-/-) mice. Opsonization by SP-A did not play a role in flgE clearance. However, exposure to SP-A directly permeabilized and killed the flgE mutant, but not the wild-type parental strain. P. aeruginosa strains with mutation in other flagellar genes, as well as mucoid, nonmotile isolates from cystic fibrosis patients, were also permeabilized by SP-A. Provision of the wild-type fliC gene restored the resistance to SP-A-mediated membrane permeabilization in the fliC-deficient bacteria. In addition, non-mucoid, motile revertants of CF isolates reacquired resistance to SP-A-mediated membrane permeability. Resistance to SP-A was dependent on the presence of an intact flagellar structure, and independent of flagellar-dependent motility. We provide evidence that flagellar-deficient mutants harbor inadequate amounts of LPS required to resist membrane permeabilization by SP-A and cellular lysis by detergent targeting bacterial outer membranes. Thus, the flagellum of P. aeruginosa plays an indirect but important role resisting SP-A-mediated clearance and membrane permeabilization
Accuracy of Doppler-Echocardiographic Mean Pulmonary Artery Pressure for Diagnosis of Pulmonary Hypertension
Background: The validity of Doppler echocardiographic (DE) measurement of systolic pulmonary artery pressure (sPAP) has been questioned. Recent studies suggest that mean pulmonary artery pressure (mPAP) might reflect more accurately the invasive pressures. Methodology/Principal Findings: 241 patients were prospectively studied to evaluate the diagnostic accuracy of mPAP for the diagnosis of PH. Right heart catheterization (RHC) and DE were performed in 164 patients mainly for preoperative evaluation of heart valve dysfunction. The correlation between DE and RHC was better when mPAP (r = 0.93) and not sPAP (r = 0.81) was assessed. Bland-Altman analysis revealed a smaller variation of mPAP than sPAP. The following ROC analysis identified that a mPAP$25.5 mmHg is useful for the diagnosis of PH. This value was validated in an independent cohort of patients (n = 50) with the suspicion of chronic-thromboembolic pulmonary hypertension. The calculated diagnostic accuracy was 98%, based on excellent sensitivity of 98 % and specificity of 100%. The corresponding positive and negative predictive values were 100%, respectively 88%. Conclusion: mPAP has been found to be highly accurate for the initial diagnosis of PH. A cut-off value of 25.5 mmHg might be helpful to avoid unnecessary RHC and select patients in whom RHC might be beneficial
Construction of uricase-overproducing strains of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor
<p>Abstract</p> <p>Background</p> <p>The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task.</p> <p>Results</p> <p>A urate-selective microbial biosensor was developed using cells of the recombinant thermotolerant methylotrophic yeast <it>Hansenula polymorpha </it>as biorecognition element. The construction of uricase (UOX) producing yeast by over-expression of the uricase gene of <it>H. polymorpha </it>is described. Following a preliminary screening of the transformants with increased UOX activity in permeabilized yeast cells the optimal cultivation conditions for maximal UOX yield namely a 40-fold increase in UOX activity were determined.</p> <p>The UOX producing cells were coupled to horseradish peroxidase and immobilized on graphite electrodes by physical entrapment behind a dialysis membrane. A high urate selectivity with a detection limit of about 8 μM was found.</p> <p>Conclusion</p> <p>A strain of <it>H. polymorpha </it>overproducing UOX was constructed. A cheap urate selective microbial biosensor was developed.</p
Conjunctival Reconstruction with Progenitor Cell-Derived Autologous Epidermal Sheets in Rhesus Monkey
Severe ocular surface diseases are some of the most challenging problems that the clinician faces today. Conventional management is generally unsatisfactory, and the long-term ocular consequences of these conditions are devastating. It is significantly important to find a substitute for conjunctival epithelial cells. This study was to explore the possibility of progenitor cell-derived epidermal sheets on denuded amniotic membrane to reconstruct ocular surface of conjunctiva damaged monkeys. We isolated epidermal progenitor cells of rhesus monkeys by type IV collagen adhesion, and then expanded progenitor cell-derived epidermal sheets on denuded amniotic membrane ex vivo. At 3 weeks after the conjunctiva injury, the damaged ocular surface of four monkeys was surgically reconstructed by transplanting the autologous cultivated epidermal progenitor cells. At 2 weeks after surgery, transplants were removed and examined with Hematoxylin-eosin staining, Periodic acid Schiff staining, immunofluorescent staining, scanning and transmission electron microscopy. Histological examination of transplanted sheets revealed that the cell sheets were healthy alive, adhered well to the denuded amniotic membrane, and had several layers of epithelial cells. Electron microscopy showed that the epithelial cells were very similar in appearance to those of normal conjunctival epithelium, even without goblet cell detected. Epithelial cells of transplants had numerous desmosomal junctions and were attached to the amniotic membrane with hemidesmosomes. Immunohistochemistry confirmed the presence of the conjunctival specific markers, mucin 4 and keratin 4, in the transplanted epidermal progenitor cells. In conclusion, our present study successfully reconstructed conjunctiva with autologous transplantation of progenitor cell-derived epidermal sheets on denuded AM in conjunctival damaged monkeys, which is the first step toward assessing the use of autologous transplantation of progenitor cells of nonocular surface origin. Epidermal progenitor cells could be provided as a new substitute for conjunctival epithelial cells to overcome the problems of autologous conjunctiva shortage
- …