958 research outputs found

    Effectiveness of Buffer Strips in Reducing Herbicide Losses

    Get PDF
    In an effort to reduce the amount of herbicide lost with sediment and water in runoff from a field, farmers are considering using best management practices (BMP\u27s) related to land, crop, and pesticide management. Conservation tillage, pesticide incorporation, contour farming, filter strips and setbacks from water, terraces, contour farming, and pesticide application timing are just a few of the BMP\u27s that could be considered. These practices allows farmers to be competitive in the market, as well as allowing them to effectively use fertilizers and pesticides with minimal losses to the environment. One BMP being strongly recommended today is the use of vegetative filter strips and/ or buffer strip. Vegetative filter strips can be defined as a strip of land that lies between the runoff area from a field and the runoff exit or drainage site at the edge or within the field. For example, a strip of grass might be placed between a fields watershed and a stream, or a strip may be placed radially around a tile inlet within a field. The benefits of such a strip would be the filtering effects of sediment and pesticides as the runoff passes over the grass. The roughness of the grassed surface would also slow down the runoff velocity, allowing potential for increased infiltration and sedimentation. Buffer strips can be defined as an area where no chemical has been applied so as to act as a buffer between an chemically applied area and a point of departure from the field. This could also be defined as a setback area. For the remainder of this paper, the term buffer strip, with or without vegetation, will be used for simplification

    Vegetative Filter Education and Assessment in the State of Iowa

    Get PDF
    Vegetative filter is one of the agricultural best management practices that helps reduce the deterioration of the surface waters. These filters use natural processes to remove a portion of the sediment and other pollutants carried by runoff before the water enters a water-body. The project aims at gathering elevation data in field-scale vegetative filters with the help of Geographic Positioning Systems (GPS) and analyzes the flow accumulation with the help of Geographic Information Systems (GIS). The overall vision and objectives for this project include (1) To determine the effectiveness of VFS by visual field observation and validation by flow mapping procedures in ArcGIS 9, (2) To compare the area ratios and percentage of flow along each stream segment at The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASABE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASABE meeting paper. EXAMPLE: Author\u27s Last Name, Initials. 2006. Title of Presentation. ASABE Paper No. 06xxxx. St. Joseph, Mich.: ASABE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASABE at [email protected] or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). various resolutions (5X5, 10X10, 20X20 and 30X30) for different sizes of the survey data sets, (3) Compare the flow routing for USGS 7.5 Quad Angle values and spatial analysis of the elevation data at resolution of 30X30. This study is of great significance in regard to key water quality and surface runoff issues, which are gaining broad awareness while developing consciousness about effective management practices and good land stewardship values. This paper will present the data and results for this study, which is still on going

    Identification of a Locus on the X Chromosome Linked to Familial Membranous Nephropathy

    Get PDF
    Puntuació de risc genètic; Glomerulonefritis; Nefropatia membranosaPuntuación de riesgo genético; Glomerulonefritis; Nefropatía membranosaGenetic risk score; Glomerulonephritis; Membranous nephropathyIntroduction Membranous nephropathy (MN) is the most common cause of nephrotic syndrome (NS) in adults and is a leading cause of end-stage renal disease due to glomerulonephritis. Primary MN has a strong male predominance, accounting for approximately 65% of cases; yet, currently associated genetic loci are all located on autosomes. Previous reports of familial MN have suggested the existence of a potential X-linked susceptibility locus. Identification of such risk locus may provide clues to the etiology of MN. Methods We identified 3 families with 8 members affected by primary MN. Genotyping was performed using single-nucleotide polymorphism microarrays, and serum was sent for anti-phospholipase A2 receptor (PLA2R) antibody testing. All affected members were male and connected through the maternal line, consistent with X-linked inheritance. Genome-wide multipoint parametric linkage analysis using a model of X-linked recessive inheritance was conducted, and genetic risk scores (GRSs) based on known MN-associated variants were determined. Results Anti-PLA2R testing was negative in all affected family members. Linkage analysis revealed a significant logarithm of the odds score (3.260) on the short arm of the X chromosome at a locus of approximately 11 megabases (Mb). Haplotype reconstruction further uncovered a shared haplotype spanning 2 Mb present in all affected individuals from the 3 families. GRSs in familial MN were significantly lower than in anti-PLA2R–associated MN and were not different from controls. Conclusions Our study identifies linkage of familial membranous nephropathy to chromosome Xp11.3-11.22. Family members affected with MN have a significantly lower GRS than individuals with anti-PLA2R–associated MN, suggesting that X-linked familial MN represents a separate etiologic entity

    Augmenting Immersive Telepresence Experience with a Virtual Body

    Full text link
    We propose augmenting immersive telepresence by adding a virtual body, representing the user's own arm motions, as realized through a head-mounted display and a 360-degree camera. Previous research has shown the effectiveness of having a virtual body in simulated environments; however, research on whether seeing one's own virtual arms increases presence or preference for the user in an immersive telepresence setup is limited. We conducted a study where a host introduced a research lab while participants wore a head-mounted display which allowed them to be telepresent at the host's physical location via a 360-degree camera, either with or without a virtual body. We first conducted a pilot study of 20 participants, followed by a pre-registered 62 participant confirmatory study. Whereas the pilot study showed greater presence and preference when the virtual body was present, the confirmatory study failed to replicate these results, with only behavioral measures suggesting an increase in presence. After analyzing the qualitative data and modeling interactions, we suspect that the quality and style of the virtual arms, and the contrast between animation and video, led to individual differences in reactions to the virtual body which subsequently moderated feelings of presence.Comment: Accepted for publication in Transactions in Visualization and Computer Graphics (TVCG), to be presented in IEEE VR 202

    The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 MAP kinases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae </it>is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in <it>An. gambiae</it>. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted.</p> <p>Results</p> <p>In this study, we present the orthologs and phylogeny of 17 <it>An. gambiae </it>MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in <it>An. gambiae </it>cells <it>in vitro </it>to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades.</p> <p>Conclusions</p> <p>The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of <it>An. gambiae </it>and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the "master signaling regulators" in biomedically important mosquito species.</p

    Evaluation of Current Technologies for Training, Web Apps, and New Technologies

    Get PDF
    This report details the activities conducted to assess the feasibility of using new technology tools for safety training. Utilizing established research studies, risk frameworks, and vendor quotations, we compared the different attributes of training methods such as Traditional Training (classroom/presentations), LMS (Learning Management System) based gamification, Computer Simulation, Virtual Reality (VR), and Augmented Reality (AR). The anticipated benefits include improved training program development, higher interactivity and long-term retention, and the chance to reduce work zone risk. The project was divided in three phases, and the following are our four key takeaways. (1) Quality of Safety Training: Benchmarking training practices provided strong evidence that participative programs, such as role plays, demonstrations of safety devices, and risk mapping are some of the best practices. Additionally, training engineers on work zone design, auditing, and recording safe work zones can influence project attributes, such as the length and duration of work zone. Including all these aspects during the project planning phase has a greater chance of influencing work zone safety. (2) Effectiveness of New Technology Tools: Our vendor outreach project phase allowed us to determine the different attributes in training course development and customer experience using new technology tools. Established research studies provided significant support to our hypothesis that new technology tools are more effective and interactive compared to traditional learning. (3) Risk-Based Approach to Training: Analyzing the risk index for work zone attributes indicate the degree of risk that a worker faces while performing a task characterizing those attributes. We concluded that implementation of new technology tools should be planned based on this risk index and optimization model. This will ensure better worker performance and perception of the course content in alignment with the severity of that work attribute. (4) Optimizing Selection of Training Tools for Tasks: We provide an optimization model to choose the optimal mix of training tools to attain the desired level of risk reduction. The tool is spreadsheet-based and shows the benefit of using a portfolio of modules across training tools, each targeted at attaining the desired risk reduction by attribute for a task. By using the risk reduction due to training tools from the literature, the cost data from vendors and task characteristics, this tool can enable INDOT managers to manage risk cost efficiently

    Population Genomic Analysis of a Pitviper Reveals Microevolutionary Forces Underlying Venom Chemistry

    Get PDF
    Venoms are among the most biologically active secretions known, and are commonly believed to evolve under extreme positive selection. Many venom gene families, however, have undergone duplication, and are often deployed in doses vastly exceeding the LD50 for most prey species, which should reduce the strength of positive selection. Here, we contrast these selective regimes using snake venoms, which consist of rapidly evolving protein formulations. Though decades of extensive studies have found that snake venom proteins are subject to strong positive selection, the greater action of drift has been hypothesized, but never tested. Using a combination of de novo genome sequencing, population genomics, transcriptomics, and proteomics, we compare the two modes of evolution in the pitviper, Protobothrops mucrosquamatus. By partitioning selective constraints and adaptive evolution in a McDonald-Kreitman-type framework, we find support for both hypotheses: venom proteins indeed experience both stronger positive selection, and lower selective constraint than other genes in the genome. Furthermore, the strength of selection may be modulated by expression level, with more abundant proteins experiencing weaker selective constraint, leading to the accumulation of more deleterious mutations. These findings show that snake venoms evolve by a combination of adaptive and neutral mechanisms, both of which explain their extraordinarily high rates of molecular evolution. In addition to positive selection, which optimizes efficacy of the venom in the short term, relaxed selective constraints for deleterious mutations can lead to more rapid turnover of individual proteins, and potentially to exploration of a larger venom phenotypic space.This work was provided by subsidy funded to the Okinawa Institute of Science and Technology Graduate University
    corecore