594 research outputs found

    Evidence for "Propeller" Effects In X-ray Pulsars GX 1+4 And GROJ1744-28

    Get PDF
    We present observational evidence for "propeller" effects in two X-ray pulsars, GX 1+4 and GROJ1744-28. Both sources were monitored regularly by the Rossi X-ray Timing Explorer (RXTE) throughout a decaying period in the X-ray brightness. Quite remarkably, strong X-ray pulsation became unmeasurable when total X-ray flux had dropped below a certain threshold. Such a phenomenon is a clear indication of the propeller effects which take place when pulsar magnetosphere grows beyond the co-rotation radius as a result of the decrease in mass accretion rate and centrifugal force prevents accreting matter from reaching the magnetic poles. The entire process should simply reverse as the accretion rate increases. Indeed, steady X-ray pulsation was reestablished as the sources emerged from the non-pulsating faint state. These data allow us to directly derive the surface polar magnetic field strength for both pulsars: 3.1E+13 G for GX 1+4 and 2.4E+11 G for GROJ1744-28. The results are likely to be accurate to within a factor of 2, with the total uncertainty dominated by the uncertainty in estimating the distances to the sources. Possible mechanisms for the persistent emission observed in the faint state are discussed in light of the extreme magnetic properties of the sources.Comment: 12 pages including 3 ps figures. To appear in ApJ Letters Vol. 48

    Arrival processes in port modeling: insights from a case study

    Get PDF
    This paper investigates the impact of arrival processes on the ship handling process. Two types of arrival processes are considered: controlled and uncontrolled. Simulation results show that uncontrolled arrivals of ships perform worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. The combination of stock-controlled arrivals for large vessels and equidistant arrivals for barges also performs better than the uncontrolled process. Careful allocation of ships to the mooring points of a jetty further improves the efficiency.supply chain management;logistics;simulation;transportation;case study

    The Double Pulsar Eclipses I: Phenomenology and Multi-frequency Analysis

    Get PDF
    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to probe directly the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al., and investigated the radio frequency dependence of the duration and depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor (~ 10^5). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov & Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere which would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.Comment: 9 pages, 7 figures, 3 tables, ApJ in pres

    Green Bank Telescope Observations of the Eclipse of Pulsar "A" in the Double Pulsar Binary PSR J0737-3039

    Full text link
    We report on the first Green Bank Telescope observations at 427, 820 and 1400 MHz of the newly discovered, highly inclined and relativistic double pulsar binary. We focus on the brief eclipse of PSR J0737-3039A, the faster pulsar, when it passes behind PSR J0737-3039B. We measure a frequency-averaged eclipse duration of 26.6 +/- 0.6 s, or 0.00301 +/- 0.00008 in orbital phase. The eclipse duration is found to be significantly dependent on radio frequency, with eclipses longer at lower frequencies. Specifically, eclipse duration is well fit by a linear function having slope (-4.52 +/- 0.03) x 10^{-7} orbits/MHz. We also detect significant asymmetry in the eclipse. Eclipse ingress takes 3.51 +/- 0.99 times longer than egress, independent of radio frequency. Additionally, the eclipse lasts (40 +/- 7) x 10^{-5} in orbital phase longer after conjunction, also independent of frequency. We detect significant emission from the pulsar on short time scales during eclipse in some orbits. We discuss these results in the context of a model in which the eclipsing material is a shock-heated plasma layer within the slower PSR J0737-3039B's light cylinder, where the relativistic pressure of the faster pulsar's wind confines the magnetosphere of the slower pulsar.Comment: 12 pages, 3 figure

    Relativistic Particle Acceleration in a Folded Current Sheet

    Full text link
    Two-dimensional particle simulations of a relativistic Harris current sheet of pair plasmashave demonstrated that the system is unstable to the relativistic drift kink instability (RDKI) and that a new kind of acceleration process takes place in the deformed current sheet. This process contributes to the generation of non-thermal particles and contributes to the fast magnetic dissipation in the current sheet structure. The acceleration mechanism and a brief comparison with relativistic magnetic reconnection are presented.Comment: 11 preprint pages, including 3 .eps figure

    Arrival processes in port modeling: insights from a case study

    Get PDF
    This paper investigates the impact of arrival processes on the ship handling process. Two types of arrival processes are considered: controlled and uncontrolled. Simulation results show that uncontrolled arrivals of ships perform worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. The combination of stock-controlled arrivals for large vessels and equidistant arrivals for barges also performs better than the uncontrolled process. Careful allocation of ships to the mooring points of a jetty further improves the efficiency

    Time-dependence in Relativistic Collisionless Shocks: Theory of the Variable "Wisps" in the Crab Nebula

    Full text link
    We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.Comment: 13 pages, 4 figures, accepted to ApJ. High-resolution figures and mpeg movies available at http://astron.berkeley.edu/~anatoly/wisp

    Statistics of Neutron Stars at the Stage of Supersonic Propeller

    Full text link
    We analyze the statistical distribution of neutron stars at the stage of a supersonic propeller. An important point of our analysis is allowance for the evolution of the angle of inclination of the magnetic axis to the spin axis of the neutron star for the boundary of the transition to the supersonic propeller stage for two models: the model with hindered particle escape from the stellar surface and the model with free particle escape. As a result, we have shown that a consistent allowance for the evolution of the inclination angle in the region of extinct radio pulsars for the two models leads to an increase in the total number of neutron stars at the supersonic propeller stage. This increase stems from he fact that when allowing for the evolution of the inclination angle χ\chi for neutron stars in the region of extinct radio pulsars and, hence, for the boundary of the transition to the propeller stage, this transition is possible at shorter spin periods (P~5-10 s) than assumed in the standard model.Comment: 15 pages, 6 figures; scale corrected for figures 3-

    On the effect of ship arrival processes on jetty and storage capacity

    Get PDF
    Ports provide jetty facilities for ships to load and unload their cargo. Jetty capacity is costly and therefore limited, causing delays for arriving ships. However, ship delays are also costly, so terminal operators attempt to minimize their number and duration. Here, simulation has proved to be a very suitable tool. However, in port simulation models, the impact of the arrival process of ships on the model outcomes tends to be underestimated. This report considers three arrival processes: stock-controlled, equidistant, and uncontrolled. We assess how their deployment in a port simulation model,based on data from a real case study, affects the efficiency of the loading and unloading process, making a case for careful modeling of arrival processes in port simulations. Uncontrolled, which is an assumed arrival process property in many client-oriented simulations, actually performs worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. Additional control of the arrival process through the application of a priority scheme in processing ships further impacts efficiency in all three cases

    Transverse quasilinear relaxation in inhomogeneous magnetic field

    Get PDF
    Transverse quasilinear relaxation of the cyclotron-Cherenkov instability in the inhomogeneous magnetic field of pulsar magnetospheres is considered. We find quasilinear states in which the kinetic cyclotron-Cherenkov instability of a beam propagating through strongly magnetized pair plasma is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have nonpower law frequency dependence, but in a broad frequency range can be well approximated by the power law with the spectral index -2. The emergent spectra and fluxes are consistent with the one observed from pulsars.Comment: 14 Pages, 4 Figure
    • …
    corecore