483 research outputs found

    Neonatal screening for congenital hypothyroidism in an Italian Centre: a 5-years real-life retrospective study

    Get PDF
    Introduction: Congenital hypothyroidism is an endocrine disease with a significant incidence in the general population (1:2000–1:3000 newborns in Italy) and a different geographical distribution, partially explained by endemic iodine deficiency, genetic traits and autoimmune thyroid diseases. Objectives: Aims of this study are: to evaluate the incidence of positive neonatal blood spot screening for CH in western Sicily, identified by the screening centre of the Children Hospital “G. Di Cristina”, ARNAS, Palermo; to evaluate the impact of a lower TSH cutoff in the neonatal blood spot screening for CH. Materials and methods: The TSH threshold of the neonatal screening was established as ≥6 mU/L of whole blood. We analysed the screening centre data in the period January 2013–April 2018, for a total number of 85.373 babies (45.7% males; 54.3% females). Results: 4.082 Babies (4.8%) required a second screening. Among these, 372 (0.44%) were out of range. The diagnosis of congenital hypothyroidism (CH) was confirmed in 182 babies (0.21%). 77/372 newborns (20.7%) with confirmed high TSH levels showed whole blood TSH levels ≥6 - < 7 mU/L. In synthesis, 48.9% of the out of range re-testing had a confirmed diagnosis of CH. Conclusion: The reduction of TSH cutoff to 6 mU/L allowed to identify 77/372 neonates (20.7%) with confirmed out of range TSH, otherwise not recruited by the previously employed TSH cutoff

    Reducing the False-Positive Rate for Isovalerylcarnitine in Expanded Newborn Screening: The Application of a Second-Tier Test

    Get PDF
    Abstract The isodecyl neopentanoate is an ingredient used in the cosmetic industry to prepare a nipple fissure balm. We report on 12 newborns that showed elevated C5-acylcarnitine levels upon newborn screening following treatment with balm. The first 3 neonates were immediately recalled for confirmatory tests and resulted negative for both isovaleric acidemia and short/branched chain acyl-CoA dehydrogenase deficiency. In the other 9 cases, the immediate recall was avoided by applying a new second-tier test able to confirm the presence of pivaloylcarnitine. The concentration of C5-acylcarnitine was measured in the days following the suspension of balm application. Abnormal concentrations of C5-acylcarnitine did not seem to be associated with free carnitine deficiency, probably due to the short time of exposure. A direct correlation between balm ingestion and the elevation in pivaloylcarnitine has been demonstrated in 10 adult volunteers. The commercial balm containing a pivalic acid derivative is causal of false-positive results during newborn screening, and it could have the potential to cause secondary carnitine deficiency when used chronically

    Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 beta

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K<sup>+</sup> buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression.</p> <p>Methods</p> <p>We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (<it>n</it> = 64), comparing the expression in tumor patients with (<it>n</it> = 38) and without epilepsy (<it>n</it> = 26).</p> <p>Results</p> <p>Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1).</p> <p>Conclusions</p> <p>Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.</p

    A new p65 isoform that bind the glucocorticoid hormone and is expressed in inflammation liver diseases and COVID-19

    Get PDF
    Inflammation is a physiological process whose deregulation causes some diseases including cancer. Nuclear Factor kB (NF-kB) is a family of ubiquitous and inducible transcription factors, in which the p65/p50 heterodimer is the most abundant complex, that play critical roles mainly in inflammation. Glucocorticoid Receptor (GR) is a ligand-activated transcription factor and acts as an anti-inflammatory agent and immunosuppressant. Thus, NF-kB and GR are physiological antagonists in the inflammation process. Here we show that in mice and humans there is a spliced variant of p65, named p65 iso5, which binds the corticosteroid hormone dexamethasone amplifying the effect of the glucocorticoid receptor and is expressed in the liver of patients with hepatic cirrhosis and hepatocellular carcinoma (HCC). Furthermore, we have quantified the gene expression level of p65 and p65 iso5 in the PBMC of patients affected by SARS-CoV-2 disease. The results showed that in these patients the p65 and p65 iso5 mRNA levels are higher than in healthy subjects. The ability of p65 iso5 to bind dexamethasone and the regulation of the glucocorticoid (GC) response in the opposite way of the wild type improves our knowledge and understanding of the anti-inflammatory response and identifies it as a new therapeutic target to control inflammation and related diseases

    Concurrent multiple sclerosis and amyotrophic lateral sclerosis: where inflammation and neurodegeneration meet?

    Get PDF
    The concurrence of multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) is exceedingly rare and the pathological features have not been examined extensively. Here we describe the key pathological features of a 40 year old man with pathologically confirmed concurrent MS and ALS

    Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence

    Get PDF
    Oxidative stress (OS) occurs in brains of patients with epilepsy and coincides with brain inflammation, and both phenomena contribute to seizure generation in animal models. We investigated whether expression of OS and brain inflammation markers co-occurred also in resected brain tissue of patients with epileptogenic cortical malformations: hemimegalencephaly (HME), focal cortical dysplasia (FCD) and cortical tubers in tuberous sclerosis complex (TSC). Moreover, we studied molecular mechanisms linking OS and inflammation in an in vitro model of neuronal function. Untangling interdependency and underlying molecular mechanisms might pose new therapeutic strategies for treating patients with drug-resistant epilepsy of different etiologies. Immunohistochemistry was performed for specific OS markers xCT and iNOS and brain inflammation markers TLR4, COX-2 and NF-κB in cortical tissue derived from patients with HME, FCD IIa, IIb and TSC. Additionally, we studied gene expression of these markers using the human neuronal cell line SH-SY5Y in which OS was induced using H 2 O 2 . OS markers were higher in dysmorphic neurons and balloon/giant cells in cortex of patients with FCD IIb or TSC. Expression of OS markers was positively correlated to expression of brain inflammation markers. In vitro, 100&nbsp;µM, but not 50&nbsp;µM, of H 2 O 2 increased expression of TLR4, IL-1β and COX-2. We found that NF-κB signaling was activated only upon stimulation with 100&nbsp;µM H 2 O 2 leading to upregulation of TLR4 signaling and IL-1β. The NF-κB inhibitor TPCA-1 completely reversed this effect. Our results show that OS positively correlates with neuroinflammation and is particularly evident in brain tissue of patients with FCD IIb and TSC. In vitro, NF-κB is involved in the switch to an inflammatory state after OS. We propose that the extent of OS can predict the neuroinflammatory state of the brain. Additionally, antioxidant treatments may prevent the switch to inflammation in neurons thus targeting multiple epileptogenic processes at once
    corecore