512 research outputs found

    Dissecting the molecular determinants of GABAA receptors current rundown, a hallmark of refractory human epilepsy

    Get PDF
    GABAA receptors-(Rs) are fundamental for the maintenance of an efficient inhibitory function in the central nervous system (CNS). Their dysfunction is associated with a wide range of CNS disorders, many of which characterized by seizures and epilepsy. Recently, an increased use-dependent desensitization due to a repetitive GABA stimulation (GABAA current rundown) of GABAARs has been associated with drug-resistant temporal lobe epilepsy (TLE). Here, we aimed to investigate the molecular determinants of GABAA current rundown with two different heterologous expression systems (Xenopus oocytes and human embryonic kidney cells; HEK) which allowed us to manipulate receptor stoichiometry and to study the GABAA current rundown on different GABAAR configurations. To this purpose, we performed electrophysiology experiments using two-electrode voltage clamp in oocytes and confirming part of our results in HEK. We found that different degrees of GABAA current rundown can be associated with the expression of different GABAAR beta-subunits reaching the maximum current decrease when functional alpha1beta2 receptors are expressed. Furthermore, the blockade of phosphatases can prevent the current rundown observed in alpha1beta2 GABAARs. Since GABAAR represents one important therapeutic target in the treatment of human epilepsy, our results could open new perspectives on the therapeutic management of drug-resistant patients showing a GABAergic impairment

    Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex

    Get PDF
    AbstractAmyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, caused by the loss of motor neurons in the brain and spinal cord. Although 10% of ALS cases are familial (FALS), the majority are sporadic (SALS) and probably associated to a multifactorial etiology. Currently there is no cure or prevention for ALS. A prerequisite to formulating therapeutic strategies is gaining understanding of its etio-pathogenic mechanisms. In this study we analyzed whole-genome expression profiles of 41 motor cortex samples of control (10) and sporadic ALS (31) patients. Unsupervised hierarchical clustering was able to separate control from SALS patients. In addition, SALS patients were subdivided in two different groups that were associated to different deregulated pathways and genes, some of which were previously associated to familiar ALS. These experiments are the first to highlight the genomic heterogeneity of sporadic ALS and reveal new clues to its pathogenesis and potential therapeutic targets

    GABA(A) receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1 beta

    Get PDF
    Gangliogliomas (GGs) are low-grade brain tumours that cause intractable focal epilepsy in children and adults. In GG, as in epileptogenic focal malformations (i.e., tuberous sclerosis complex, TSC), there is evidence of sustained neuroinflammation with involvement of the pro-inflammatory cytokine IL-1β. On the other hand, anti-inflammatory mediators are less studied but bear relevance for understanding seizure mechanisms. Therefore, we investigated the effect of the key anti-inflammatory cytokine IL-10 on GABAergic neurotransmission in GG. We assessed the IL-10 dependent signaling by transcriptomic analysis, immunohistochemistry and performed voltage-clamp recordings on Xenopus oocytes microtransplanted with cell membranes from brain specimens, to overcome the limited availability of acute GG slices. We report that IL-10-related mRNAs were up-regulated in GG and slightly in TSC. Moreover, we found IL-10 receptors are expressed by neurons and astroglia. Furthermore, GABA currents were potentiated significantly by IL-10 in GG. This effect was time and dose-dependent and inhibited by blockade of IL-10 signaling. Notably, in the same tissue, IL-1β reduced GABA current amplitude and prevented the IL-10 effect. These results suggest that in epileptogenic tissue, pro-inflammatory mechanisms of hyperexcitability prevail over key anti-inflammatory pathways enhancing GABAergic inhibition. Hence, boosting the effects of specific anti-inflammatory molecules could resolve inflammation and reduce intractable seizures

    The BH4 domain of Bcl-XL rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals

    Get PDF
    Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1G93A mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP3)-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP3 can prompt IP3 receptor (IP3R)-mediated Ca2+ release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca2+ signaling that occurs downstream of mGluR5 in hSOD1G93A-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca2+ concentrations ([Ca2+]i) in the absence of spontaneous oscillations. The interaction of IP3Rs with the anti-apoptotic protein Bcl-XL was previously described to prevent cell death by modulating intracellular Ca2+ signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-XL, fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca2+ oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1G93A mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for AL

    Atherosclerosis in the circle of Willis: Spatial differences in composition and in distribution of plaques

    Get PDF
    AbstractBackground and aimsIntracranial atherosclerosis is one of the main causes of ischemic stroke. However, the characteristics of intracranial arteries and atherosclerosis have rarely been studied. Therefore, we systematically investigated atherosclerotic changes in all arteries of the Circle of Willis (CoW).MethodsSixty-seven CoWs obtained at autopsy from randomly chosen hospital patients (mean age, 67.3 ± 12.5 years), of which a total of 1220 segments were collected from 22 sites. Atherosclerotic plaques were classified according to the revised American Heart Association classification and were related to local vessel characteristics, such as the presence of an external and internal elastic lamina and the elastic fibre density of the media.Results181 out of the 1220 segments had advanced plaques (15%), which were mainly observed in large arteries such as the internal carotid, middle cerebral, basilar and vertebral artery. Only 11 out of 1220 segments (1%) showed complicated plaques (p < 0.001). Six of these were intraplaque hemorrhages (IPH) and observed only in patients who had cardiovascular-related events (p = 0.015). The frequency of characteristics such as the external elastic lamina and a high elastin fibre density in the media was most often associated with the vertebral artery. Only 3% (n = 33) of the CoW arteries contained calcification (p < 0.001), which were mostly observed in the vertebral artery (n = 13, 12%).ConclusionsAdvanced atherosclerotic plaques in the CoW are relatively scarce and mainly located in the 4 large arteries, and mostly characterized by an early and stable phenotype, a low calcific burden, and a low frequency of IPH

    A Ketogenic Diet Suppresses Seizures in Mice through Adenosine A1 Receptors

    Get PDF
    A ketogenic diet (KD) is a high-fat, low-carbohydrate metabolic regimen; its effectiveness in the treatment of refractory epilepsy suggests that the mechanisms underlying its anticonvulsive effects differ from those targeted by conventional antiepileptic drugs. Recently, KD and analogous metabolic strategies have shown therapeutic promise in other neurologic disorders, such as reducing brain injury, pain, and inflammation. Here, we have shown that KD can reduce seizures in mice by increasing activation of adenosine A1 receptors (A1Rs). When transgenic mice with spontaneous seizures caused by deficiency in adenosine metabolism or signaling were fed KD, seizures were nearly abolished if mice had intact A1Rs, were reduced if mice expressed reduced A1Rs, and were unaltered if mice lacked A1Rs. Seizures were restored by injecting either glucose (metabolic reversal) or an A1R antagonist (pharmacologic reversal). Western blot analysis demonstrated that the KD reduced adenosine kinase, the major adenosine-metabolizing enzyme. Importantly, hippocampal tissue resected from patients with medically intractable epilepsy demonstrated increased adenosine kinase. We therefore conclude that adenosine deficiency may be relevant to human epilepsy and that KD can reduce seizures by increasing A1R-mediated inhibition

    Bacteriophages a bio sustainable solution to tackle Alzheimer´s disease

    Get PDF
    Introduction: Amyloid-beta (AB) is a prime suspect to cause Alzheimers disease (AD), an irreversible, progressive and age-dependent neurodegenerative disorder affecting millions of people worldwide. An accumulation of AB in the brain leads to its aggregation into soluble oligomeric and fibrillar clusters, which are the culprits to impair synaptic function and memory formation in mice models. Currently, we lack diagnostic tools to detect AB oligomers (ABOs) in the brain, all the methods used provide a late diagnosis when there are already symptoms. Moreover, the existence of the blood-brain-barrier (BBB) is the major bottleneck for reaching the brain. To overcome this, bacteriophages (phages: bacterial viruses) are a solution, once they posses the capacity to cross the BBB. Aims: Hence, our main goals were the development of a solution to 1) detect ABOs in the brain and monitor AD progression and 2) delay or prevent the onset of the symptoms. Methods: We resorted to phage engineering with AB-targeting peptides described to recognize ABOs and fibrils with high affinity. These were tested for their capacity to detect ABOs in tissues samples and their effect on AB aggregation. Results: The engineered phages are able to detect the early and toxic forms of AB in brain tissue of APP/PS1 transgenic mice and human donors. Moreover, these phages also possess a high therapeutic potential by inhibiting the aggregation process of AB. Conclusion: We provide a highly versatile bio-inspired solution based on phages displaying AB peptides to detect early soluble AB oligomers in the brain, and possibly prevent, or delay, the onset of the symptoms, consequently inhibiting AD progression.The authors thank the Project EARLY - Phage towards initial amyloid-beta funded by TecMinho through the iProof initiative, in the scope of the project UI-Transfer, co-financed by COMPETE 2020, through Fundo Europeu de Desenvolvimento Regional (FEDER). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, and by LABBELS – Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, LA/P/0029/2020, center grant UID/MULTI/04046/2020 (to BioISI), PhD fellowship SFRH/BD/101171/2014 (to J.S.C.), and by Alzheimer Nederland (H.W.K.).info:eu-repo/semantics/publishedVersio

    Developmental patterns of DR6 in normal human hippocampus and in Down syndrome

    Get PDF
    Background Death receptor 6 (DR6) is highly expressed in the human brain: it has been shown to induce axon pruning and neuron death via distinct caspases and to mediate axonal degeneration through binding to N-terminal β amyloid precursor protein (N-APP). Methods We investigated the expression of DR6 during prenatal and postnatal development in human hippocampus and temporal cortex by immunocytochemistry and Western blot analysis (118 normal human brain specimens; 9 to 41 gestational weeks; 1 day to 7 months postnatally; 3 to 91 years). To investigate the role of N-APP/DR6/caspase 6 pathway in the development of hippocampal Alzheimer’s disease (AD)-associated pathology, we examined DR6 immunoreactivity (IR) in the developing hippocampus from patients with Down syndrome (DS; 48 brain specimens; 14 to 41 gestational weeks; 7 days to 8 months postnatally; 15 to 64 years) and in adults with DS and AD. Results DR6 was highly expressed in human adult hippocampus and temporal cortex: we observed consistent similar temporal and spatial expression in both control and DS brain. Western blot analysis of total homogenates of temporal cortex and hippocampus showed developmental regulation of DR6. In the hippocampus, DR6 IR was first apparent in the stratum lacunosum-moleculare at 16 weeks of gestation, followed by stratum oriens, radiatum, pyramidale (CA1 to CA4) and molecular layer of the dentate gyrus between 21 and 23 gestational weeks, reaching a pattern similar to adult hippocampus around birth. Increased DR6 expression in dystrophic neurites was detected focally in a 15-year-old DS patient. Abnormal DR6 expression pattern, with increased expression within dystrophic neurites in and around amyloid plaques was observed in adult DS patients with widespread AD-associated neurodegeneration and was similar to the pattern observed in AD hippocampus. Double-labeling experiments demonstrated the colocalization, in dystrophic neurites, of DR6 with APP. We also observed colocalization with hyper-phosphorylated Tau and with caspase 6 (increased in hippocampus with AD pathology) in plaque-associated dystrophic neurites and within the white matter. Conclusions These findings demonstrate a developmental regulation of DR6 in human hippocampus and suggest an abnormal activation of the N-APP/DR6/caspase 6 pathway, which can contribute to initiation or progression of hippocampal AD-associated pathology

    Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis.

    Get PDF
    In amyotrophic lateral sclerosis (ALS), immune cells and glia contribute to motor neuron (MN) degeneration. We report the presence of NK cells in post-mortem ALS motor cortex and spinal cord tissues, and the expression of NKG2D ligands on MNs. Using a mouse model of familial-ALS, hSOD1G93A, we demonstrate NK cell accumulation in the motor cortex and spinal cord, with an early CCL2-dependent peak. NK cell depletion reduces the pace of MN degeneration, delays motor impairment and increases survival. This is confirmed in another ALS mouse model, TDP43A315T. NK cells are neurotoxic to hSOD1G93A MNs which express NKG2D ligands, while IFNÎł produced by NK cells instructs microglia toward an inflammatory phenotype, and impairs FOXP3+/Treg cell infiltration in the spinal cord of hSOD1G93A mice. Together, these data suggest a role of NK cells in determining the onset and progression of MN degeneration in ALS, and in modulating Treg recruitment and microglia phenotype
    • …
    corecore