2,205 research outputs found

    What is moving in hybrid halide perovskite solar cells?

    Full text link
    Organic-inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3_3NH3_3PbI3_3) and formamidinium lead iodide ([CH(NH2_2)2_2]PbI3_3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron-hole recombination rates, and current-voltage hysteresis. Multi-scale simulations - drawing from electronic structure, ab initio molecular dynamic and Monte Carlo techniques - have been combined with neutron scattering and ultra-fast vibrational spectroscopy to qualify the nature and timescales of the motions. Recent experimental evidence and theoretical models for simultaneous electron transport and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to metal oxide perovskites developed for battery and fuel cell applications. We expound on the implications of these effects for the photovoltaic action. The temporal behaviour found in hybrid perovskites introduces a sensitivity in materials characterisation to the time and length scale of the measurement, as well as the history of each sample. It also poses significant challenges for accurate materials and device simulations. Herein, we critically discuss the atomistic origin of the dynamic processes.Comment: 29 pages, 3 figure

    Oxidation of GaN: An ab initio thermodynamic approach

    Full text link
    GaN is a wide-bandgap semiconductor used in high-efficiency LEDs and solar cells. The solid is produced industrially at high chemical purities by deposition from a vapour phase, and oxygen may be included at this stage. Oxidation represents a potential path for tuning its properties without introducing more exotic elements or extreme processing conditions. In this work, ab initio computational methods are used to examine the energy potentials and electronic properties of different extents of oxidation in GaN. Solid-state vibrational properties of Ga, GaN, Ga2O3 and a single substitutional oxygen defect have been studied using the harmonic approximation with supercells. A thermodynamic model is outlined which combines the results of ab initio calculations with data from experimental literature. This model allows free energies to be predicted for arbitrary reaction conditions within a wide process envelope. It is shown that complete oxidation is favourable for all industrially-relevant conditions, while the formation of defects can be opposed by the use of high temperatures and a high N2:O2 ratio

    A universal chemical potential for sulfur vapours

    Get PDF
    The unusual chemistry of sulfur is illustrated by the tendency for catenation. Sulfur forms a range of open and closed Sn_n species in the gas phase, which has led to speculation on the composition of sulfur vapours as a function of temperature and pressure for over a century. Unlike elemental gases such as O2_2 and N2_2, there is no widely accepted thermodynamic potential for sulfur. Here we combine a first-principles global structure search for the low energy clusters from S2_2 to S8_8 with a thermodynamic model for the mixed-allotrope system, including the Gibbs free energy for all gas-phase sulfur on an atomic basis. A strongly pressure-dependent transition from a mixture dominant in S2_2 to S8_8 is identified. A universal chemical potential function, μS(T,P)\mu_{\mathrm{S}}(T,P), is proposed with wide utility in modelling sulfurisation processes including the formation of metal chalcogenide semiconductors.Comment: 12 pages, 9 figures. Supporting code and data is available at https://github.com/WMD-Bath/sulfur-model [snapshot DOI: 10.5281/zenodo.28536]. Further data will be available from DOI:10.6084/m9.figshare.1513736 and DOI:10.6084/m9.figshare.1513833 following peer-revie

    Surface oxygen vacancy origin of electron accumulation in indium oxide

    Get PDF

    Ferroelectric Materials for Solar Energy Conversion: Photoferroics Revisited

    Get PDF
    The application of ferroelectric materials (i.e. solids that exhibit spontaneous electric polarisation) in solar cells has a long and controversial history. This includes the first observations of the anomalous photovoltaic effect (APE) and the bulk photovoltaic effect (BPE). The recent successful application of inorganic and hybrid perovskite structured materials (e.g. BiFeO3, CsSnI3, CH3NH3PbI3) in solar cells emphasises that polar semiconductors can be used in conventional photovoltaic architectures. We review developments in this field, with a particular emphasis on the materials known to display the APE/BPE (e.g. ZnS, CdTe, SbSI), and the theoretical explanation. Critical analysis is complemented with first-principles calculation of the underlying electronic structure. In addition to discussing the implications of a ferroelectric absorber layer, and the solid state theory of polarisation (Berry phase analysis), design principles and opportunities for high-efficiency ferroelectric photovoltaics are presented

    Electronic chemical potentials of porous metal-organic frameworks

    Get PDF
    The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal-organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal-organic frameworks and apply it to obtain the first ionisation energy for six prototype materials including zeolitic, covalent and ionic frameworks. This approach for valence band alignment can explain observations relating to the electrochemical, optical and electrical properties of porous frameworks

    Ultra-thin oxide films for band engineering: design principles and numerical experiments

    Get PDF
    AbstractThe alignment of band energies between conductive oxides and semiconductors is crucial for the further development of oxide contacting layers in electronic devices. The growth of ultra thin films on the surface of an oxide material can be used to introduce a dipole moment at that surface due to charge differences. The dipole, in turn, alters the electrostatic potential — and hence the band energies — in the substrate oxide. We demonstrate the fundamental limits for the application of thin-films in this context, applying analytical and numerical simulations, that bridge continuum and atomistic. The simulations highlight the different parameters that can affect the band energy shifting potential of a given thin-film layer, taking the examples of MgO and SnO2. In particular we assess the effect of formal charge, layer orientation, layer thickness and surface coverage, with respect to their effect on the electrostatic potential. The results establish some design principles, important for further development and application of thin-films for band energy engineering in transparent conductive oxide materials
    • …
    corecore