research

Electronic chemical potentials of porous metal-organic frameworks

Abstract

The binding energy of an electron in a material is a fundamental characteristic, which determines a wealth of important chemical and physical properties. For metal-organic frameworks this quantity is hitherto unknown. We present a general approach for determining the vacuum level of porous metal-organic frameworks and apply it to obtain the first ionisation energy for six prototype materials including zeolitic, covalent and ionic frameworks. This approach for valence band alignment can explain observations relating to the electrochemical, optical and electrical properties of porous frameworks

    Similar works