53 research outputs found
Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study
In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm) were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes
Initial Safety and Tumor Control Results From a "First-in-Human" Multicenter Prospective Trial Evaluating a Novel Alpha-Emitting Radionuclide for the Treatment of Locally Advanced Recurrent Squamous Cell Carcinomas of the Skin and Head and Neck.
Purpose Our purpose was to report the feasibility and safety of diffusing alpha-emitter radiation therapy (DaRT), which entails the interstitial implantation of a novel alpha-emitting brachytherapy source, for the treatment of locally advanced and recurrent squamous cancers of the skin and head and neck. Methods and Materials This prospective first-in-human, multicenter clinical study evaluated 31 lesions in 28 patients. The primary objective was to determine the feasibility and safety of this approach, and the secondary objectives were to evaluate the initial tumor response and local progression-free survival. Eligibility criteria included all patients with biopsy-proven squamous cancers of the skin and head and neck with either primary tumors or recurrent/previously treated disease by either surgery or prior external beam radiation therapy; 13 of 31 lesions (42%) had received prior radiation therapy. Toxicity was evaluated according to the Common Terminology Criteria for Adverse Events version 4.03. Tumor response was assessed at 30 to 45 days at a follow-up visit using the Response Evaluation Criteria in Solid Tumors, version 1.1. Median follow-up time was 6.7 months. Results Acute toxicity included mostly local pain and erythema at the implantation site followed by swelling and mild skin ulceration. For pain and grade 2 skin ulcerations, 90% of patients had resolution within 3 to 5 weeks. Complete response to the Ra-224 DaRT treatment was observed in 22 lesions (22/28; 78.6%); 6 lesions (6/28, 21.4%) manifested a partial response (>30% tumor reduction). Among the 22 lesions with a complete response, 5 (22%) developed a subsequent local relapse at the site of DaRT implantation at a median time of 4.9 months (range, 2.43-5.52 months). The 1-year local progression-free survival probability at the implanted site was 44% overall (confidence interval [CI], 20.3%-64.3%) and 60% (95% CI, 28.61%-81.35%) for complete responders. Overall survival rates at 12 months post-DaRT implantation were 75% (95% CI, 46.14%-89.99%) among all patients and 93% (95% CI, 59.08%-98.96%) among complete responders. Conclusions Alpha-emitter brachytherapy using DaRT achieved significant tumor responses without grade 3 or higher toxicities observed. Longer follow-up observations and larger studies are underway to validate these findings
Heparanase contributes to pancreatic carcinoma progression through insulin-dependent glucose uptake
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor, which is highly resistant to existing therapies and characterized by one of the lowest survival rates known for solid cancers. Among the reasons for this poor prognosis are unique pathophysiological features of PDAC, such as dense extracellular matrix [ECM] creating barriers to drug delivery, as well as systemically-deregulated glucose metabolism manifested by diabetic conditions (i.e., hyperinsulinemia/hyperglycemia) occurring in the majority of PDAC patients. Moreover, in addition to systemically deregulated glucose homeostasis, intracellular metabolic pathways in PDAC are rewired toward increased glucose uptake/anabolic metabolism by the tumor cells. While the role of oncogene-driven programs in governing these processes is actively studied, mechanisms linking metabolic dysregulation and ECM enzymatic remodeling to PDAC progression/therapy resistance are less appreciated. The aim of the current study was to investigate the action of heparanase (the predominant mammalian enzyme that degrades heparan sulfate glycosaminoglycan in the ECM), as a molecular link between the diabetic state and the intracellular metabolic rewiring in PDAC pathogenesis. Here we show that in PDAC elevated levels of heparanase, coupled with diabetic conditions typical for PDAC patients, promote growth and chemotherapy resistance of pancreatic carcinoma by favoring insulin receptor signaling and GLUT4-mediated glucose uptake into tumor cells. Collectively, our findings underscore previously unknown mechanism through which heparanase acts at the interface of systemic and intracellular metabolic alterations in PDAC and attest the enzyme as an important and potentially modifiable contributor to the chemo-resistance of pancreatic tumors
Improving the response to lenvatinib in partial responders using a Constrained-Disorder-Principle-based second-generation artificial intelligence-therapeutic regimen: a proof-of-concept open-labeled clinical trial
IntroductionThe main obstacle in treating cancer patients is drug resistance. Lenvatinib treatment poses challenges due to loss of response and the common dose-limiting adverse events (AEs). The Constrained-disorder-principle (CDP)-based second-generation artificial intelligence (AI) systems introduce variability into treatment regimens and offer a potential strategy for enhancing treatment efficacy. This proof-of-concept clinical trial aimed to assess the impact of a personalized algorithm-controlled therapeutic regimen on lenvatinib effectiveness and tolerability.MethodsA 14-week open-label, non-randomized trial was conducted with five cancer patients receiving lenvatinib—an AI-assisted application tailored to a personalized therapeutic regimen for each patient, which the treating physician approved. The study assessed changes in tumor response through FDG-PET-CT and tumor markers and quality of life via the EORTC QLQ-THY34 questionnaire, AEs, and laboratory evaluations. The app monitored treatment adherence.ResultsAt 14 weeks of follow-up, the disease control rate (including the following outcomes: complete response, partial response, stable disease) was 80%. The FDG-PET-CT scan-based RECIST v1.1 and PERCIST criteria showed partial response in 40% of patients and stable disease in an additional 40% of patients. One patient experienced a progressing disease. Of the participants with thyroid cancer, 75% showed a reduction in thyroglobulin levels, and 60% of all the participants showed a decrease in neutrophil-to-lymphocyte ratio during treatment. Improvement in the median social support score among patients utilizing the system supports an ancillary benefit of the intervention. No grade 4 AEs or functional deteriorations were recorded.SummaryThe results of this proof-of-concept open-labeled clinical trial suggest that the CDP-based second-generation AI system-generated personalized therapeutic recommendations may improve the response to lenvatinib with manageable AEs. Prospective controlled studies are needed to determine the efficacy of this approach
Real World Clinical Experience Using Daily Intelligence-Assisted Online Adaptive Radiotherapy for Head and Neck Cancer
Background
Adaptive radiation therapy (ART) offers a dynamic approach to address structural and spatial changes that occur during radiotherapy (RT) for locally advanced head and neck cancers. The integration of daily ART with Cone-Beam CT (CBCT) imaging presents a solution to enhance the therapeutic ratio by addressing inter-fractional changes. Methods
We evaluated the initial clinical experience of daily ART for patients with head and neck cancer using an online adaptive platform with intelligence-assisted workflows on daily CBCT. Treatment included auto-contour and structure deformation of Organs at Risk (OARs) and target structures, with adjustments by the treating physician. Two plans were generated: one based on the initial CT simulation with the edited structures (scheduled) and a re-optimized plan (adaptive). Both plans were evaluated and the superior one approved and delivered. Clinical and dosimetric outcomes were reviewed. Results
Twenty two patients with head and neck cancers (7 Nasopharynx, 6 Oropharynx, 1 oral cavity, 8 larynx) stages I-IVA were treated with daily ART. 770 adaptive and scheduled radiotherapy plans were generated. 703 (91.3%) adaptive plans were chosen. Median time to deliver ART was 20 minutes (range: 18-23). Adaptive compared to scheduled plans demonstrated improved mean V95 values for the PTV70, PTV59.5, and PTV56 by 1.2%, 7.2%, and 6.0% respectively and a mean 1.4% lower maximum dose in PTV70. Fourteen of 17 OARs demonstrated improved dosimetry with adaptation, with select OARs reaching statistical significance. At a median follow up of 14.1 months, local control was 95.5%, two patients developed metastatic disease and four patients died. 9.1% of patients had acute grade 3 dysphagia and 13.6% had grade 2 chronic xerostomia. Discussion
These findings provide real world evidence of the feasibility and dosimetric benefit of incorporating daily ART on CBCT in the treatment of head and neck cancer. Prospective study is needed to determine if these dosimetric improvements translate into improved outcomes
An approach to identify, from DCE MRI, significant subvolumes of tumors related to outcomes in advanced head‐and‐neck cancera)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134885/1/mp7022.pd
- …