3,881 research outputs found

    Posttransplant lymphoproliferative disorders in neuronal xenotransplanted macaques

    Get PDF
    Posttransplant lymphoproliferative disorders (PTLDs) are a heterogeneous group of lymphoid proliferations that occur in the setting of depressed T-cell function due to immunosuppressive therapy used following solid organ transplantation, hematopoietic stem cell transplantation, and also xenotransplantation. In the present study, 28 immunosuppressed parkinsonian Macaca fascicularis were intracerebrally injected with wild-type or CTLA4-Ig transgenic porcine xenografts to identify a suitable strategy to enable long-term cell survival, maturation, and differentiation. Nine of 28 (32%) immunosuppressed primates developed masses compatible with PTLD, located mainly in the gastrointestinal tract and/or nasal cavity. The masses were classified as monomorphic PTLD according to the World Health Organization classification. Immunohistochemistry and polymerase chain reaction (PCR) analyses revealed that the PTLDs were associated with macaca lymphocryptovirus as confirmed by double-labeling immunohistochemistry for CD20 and Epstein-Barr nuclear antigen 2 (EBNA-2), where the viral protein was located within the CD20+ neoplastic B cells. In sera from 3 distinct phases of the experimental life of the primates, testing by quantitative PCR revealed a progression of the viral load that paralleled the PTLD progression and no evidence of zoonotic transmission of porcine lymphotropic herpesvirus through xenoneuronal grafts. These data suggest that monitoring the variation of macaca lymphocryptovirus DNA in primates could be used as a possible early diagnostic tool for PTLD progression, allowing preemptive treatment such as immunosuppression therapy reduction

    Spectra of weighted algebras of holomorphic functions

    Full text link
    We consider weighted algebras of holomorphic functions on a Banach space. We determine conditions on a family of weights that assure that the corresponding weighted space is an algebra or has polynomial Schauder decompositions. We study the spectra of weighted algebras and endow them with an analytic structure. We also deal with composition operators and algebra homomorphisms, in particular to investigate how their induced mappings act on the analytic structure of the spectrum. Moreover, a Banach-Stone type question is addressed.Comment: 25 pages Corrected typo

    Establishing endangered species recovery criteria using predictive simulation modeling

    Get PDF
    Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S. Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions for removing a species from ESA protections, need to be closely related to extinction risk. Extinction probability is a population parameter estimated with a model that uses current demographic information to project the population into the future over a number of replicates, calculating the proportion of replicated populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains and estimated the relationship between extinction probability and various demographic parameters. We tested the fit of regression models linking initial abundance, productivity, or population growth rate to extinction risk, and then, using the regression parameter estimates, determined the conditions required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression models with mean population growth rate and the natural log of initial abundance were the best predictors of extinction probability 50 years into the future. For example, based on our regression models, an initial abundance of approximately 2400 females with an expected mean population growth rate of 1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides a straightforward way of developing specific and measurable recovery criteria linked directly to the core issue of extinction risk

    Superuniversality in phase-ordering disordered ferromagnets

    Full text link
    The phase-ordering kinetics of the ferromagnetic two-dimensional Ising model with uniform bond disorder is investigated by intensive Monte Carlo simulations. Simple ageing behaviour is observed in the single-time correlator and the two-time responses and correlators. The dynamical exponent z and the autocorrelation exponent lambda_C only depend on the ratio eps/T, where eps describes the width of the distribution of the disorder, whereas a more complicated behaviour is found for the non-equilibrium exponent a of the two-time response as well as for the autoresponse exponent lambda_R. The scaling functions are observed to depend only on the dimensionless ratio eps/T. If the length scales are measured in terms of the time-dependent domain size L(t), the form of the scaling functions is in general independent of both eps and T. Conditions limiting the validity of this `superuniversality' are discussed.Comment: Latex2e, 10pp with 8 figures included, PR macro

    Critical Langevin dynamics of the O(N)-Ginzburg-Landau model with correlated noise

    Full text link
    We use the perturbative renormalization group to study classical stochastic processes with memory. We focus on the generalized Langevin dynamics of the \phi^4 Ginzburg-Landau model with additive noise, the correlations of which are local in space but decay as a power-law with exponent \alpha in time. These correlations are assumed to be due to the coupling to an equilibrium thermal bath. We study both the equilibrium dynamics at the critical point and quenches towards it, deriving the corresponding scaling forms and the associated equilibrium and non-equilibrium critical exponents \eta, \nu, z and \theta. We show that, while the first two retain their equilibrium values independently of \alpha, the non-Markovian character of the dynamics affects the dynamic exponents (z and \theta) for \alpha < \alpha_c(D, N) where D is the spatial dimensionality, N the number of components of the order parameter, and \alpha_c(x,y) a function which we determine at second order in 4-D. We analyze the dependence of the asymptotic fluctuation-dissipation ratio on various parameters, including \alpha. We discuss the implications of our results for several physical situations

    Fluctuations of two-time quantities and time-reparametrization invariance in spin-glasses

    Full text link
    This article is a contribution to the understanding of fluctuations in the out of equilibrium dynamics of glassy systems. By extending theoretical ideas based on the assumption that time-reparametrization invariance develops asymptotically we deduce the scaling properties of diverse high-order correlation functions. We examine these predictions with numerical tests in a standard glassy model, the 3d Edwards-Anderson spin-glass, and in a system where time-reparametrization invariance is not expected to hold, the 2d ferromagnetic Ising model, both at low temperatures. Our results enlighten a qualitative difference between the fluctuation properties of the two models and show that scaling properties conform to the time-reparametrization invariance scenario in the former but not in the latter.Comment: 17 pages, 5 figure

    Governance of Offshore IT Outsourcing at Shell Global Functions IT-BAM Development and Application of a Governance Framework to Improve Outsourcing Relationships

    Get PDF
    The lack of effective IT governance is widely recognized as a key inhibitor to successful global IT outsourcing relationships. In this study we present the development and application of a governance framework to improve outsourcing relationships. The approach used to developing an IT governance framework includes a meta model and a customization process to fit the framework to the target organization. The IT governance framework consists of four different elements (1) organisational structures, (2) joint processes between in- and outsourcer, (3) responsibilities that link roles to processes and (4) a diverse set of control indicators to measure the success of the relationship. The IT governance framework is put in practice in Shell GFIT BAM, a part of Shell that concluded to have a lack of management control over at least one of their outsourcing relationships. In a workshop the governance framework was used to perform a gap analysis between the current and desired governance. Several gaps were identified in the way roles and responsibilities are assigned and joint processes are set-up. Moreover, this workshop also showed the usefulness and usability of the IT governance framework in structuring, providing input and managing stakeholders in the discussions around IT governance

    Multi-component Transparent Conducting Oxides: Progress in Materials Modelling

    Full text link
    Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid-solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on Density Functional Theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n, named IZO, and (In2O3)m(Ga2O3)l(ZnO)n, named IGZO; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high-performance of amorphous oxide semiconductors. From these advances, the challenge of the rational design of novel electroceramic materials is discussed.Comment: Part of a themed issue of Journal of Physics: Condensed Matter on "Semiconducting Oxides". In Press (2011

    Inference with interference between units in an fMRI experiment of motor inhibition

    Full text link
    An experimental unit is an opportunity to randomly apply or withhold a treatment. There is interference between units if the application of the treatment to one unit may also affect other units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or requests for cognitive activity at random to each experimental subject and measures biological aspects of brain activity that follow these requests. Each subject is then many experimental units, and interference between units within an experimental subject is likely, in part because the stimuli follow one another quickly and in part because human subjects learn or become experienced or primed or bored as the experiment proceeds. We use a recent fMRI experiment concerned with the inhibition of motor activity to illustrate and further develop recently proposed methodology for inference in the presence of interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package cin (Causal Inference for Neuroscience) implementing the proposed method is freely available on CRAN at https://CRAN.R-project.org/package=ci

    A discrete, unitary, causal theory of quantum gravity

    Full text link
    A discrete model of Lorentzian quantum gravity is proposed. The theory is completely background free, containing no reference to absolute space, time, or simultaneity. The states at one slice of time are networks in which each vertex is labelled with two arrows, which point along an adjacent edge, or to the vertex itself. The dynamics is specified by a set of unitary replacement rules, which causally propagate the local degrees of freedom. The inner product between any two states is given by a sum over histories. Assuming it converges (or can be Abel resummed), this inner product is proven to be hermitian and fully gauge-degenerate under spacetime diffeomorphisms. At least for states with a finite past, the inner product is also positive. This allows a Hilbert space of physical states to be constructed.Comment: 38 pages, 9 figures, v3 added to exposition and references, v4 expanded prospects sectio
    corecore