50 research outputs found

    Irreversibility of symbolic time series: a cautionary tale

    Full text link
    Many empirical time series are genuinely symbolic: examples range from link activation patterns in network science, DNA coding or firing patterns in neuroscience to cryptography or combinatorics on words. In some other contexts, the underlying time series is actually real-valued, and symbolization is applied subsequently, as in symbolic dynamics of chaotic systems. Among several time series quantifiers, time series irreversibility (the difference between forward and backward statistics in stationary time series) is of great relevance. However, the irreversible character of symbolized time series is not always equivalent to the one of the underlying real-valued signal, leading to some misconceptions and confusion on interpretability. Such confusion is even bigger for binary time series (a classical way to encode chaotic trajectories via symbolic dynamics). In this article we aim to clarify some usual misconceptions and provide theoretical grounding for the practical analysis -- and interpretation -- of time irreversibility in symbolic time series. We outline sources of irreversibility in stationary symbolic sequences coming from frequency asymmetries of non-palindromic pairs which we enumerate, and prove that binary time series cannot show any irreversibility based on words of length m < 4, thus discussing the implications and sources of confusion. We also study irreversibility in the context of symbolic dynamics, and clarify why these can be reversible even when the underlying dynamical system is not, such as the case of the fully chaotic logistic map

    Behavioural response to heterogeneous severity of COVID-19 explains temporal variation of cases among different age groups

    Get PDF
    Together with seasonal effects inducing outdoor or indoor activities, the gradual easing of prophylaxis caused second and third waves of SARS-CoV-2 to emerge in various countries. Interestingly, data indicate that the proportion of infections belonging to the elderly is particularly small during periods of low prevalence and continuously increases as case numbers increase. This effect leads to additional stress on the health care system during periods of high prevalence. Furthermore, infections peak with a slight delay of about a week among the elderly compared to the younger age groups. Here, we provide a mechanistic explanation for this phenomenology attributable to a heterogeneous prophylaxis induced by the age-specific severity of the disease. We model the dynamical adoption of prophylaxis through a two-strategy game and couple it with an SIR spreading model. Our results also indicate that the mixing of contacts among the age groups strongly determines the delay between their peaks in prevalence and the temporal variation in the distribution of cases. This article is part of the theme issue ''Data science approaches to infectious disease surveillance''

    Molecular phenomics of a high-calorie diet-induced porcine model of prepubertal obesity

    Get PDF
    As obesity incidence is alarmingly rising among young individuals, we aimed to characterize an experimental model of this situation, considering the similarity between human and porcine physiology. For this reason, we fed prepubertal (63 days-old) Duroc breed females (n=20) either with a standard growth diet (3800 KCal/day) or one with a high-calorie content (5200 KCal/day) during 70 days. Computerized tomography, mass-spectrometry based metabolomics, and lipidomics, as well as peripheral blood mononuclear cell transcriptomics, were applied to define traits linked to high-calorie intake. Samples from a human cohort confirmed potential lipidomic markers. Compared to those fed a standard growth diet, pigs fed a high-calorie diet showed an increased weight gain (13%), much higher adiposity (53%), hypertriacylglyceridemia and hypercholesterolemia, in parallel to insulin resistance. This diet induced marked changes in the circulating lipidome, particularly in phosphatidylethanolamine-type molecules. Also, circulating specific diacylglycerol and monoacylglycerol contents correlated with visceral fat and intrahepatic triacylglycerol concentrations. Specific lipids associated with obesity in swine (mainly belonging to glycerophospholipid, triacylglyceride, and sterol classes) were also linked with obesity-traits in the human cohort, reinforcing the usefulness of the chosen approach. Interestingly, no overt inflammation in plasma or adipose tissue was evident in this model. The presented model is useful as a preclinical surrogate of prepubertal obesity in order to ascertain the pathophysiology interactions between energy intake and obesity development.info:eu-repo/semantics/acceptedVersio

    Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies.

    Get PDF
    Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC(50) determination. The IC(50) values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results

    Effects from diet-induced gut microbiota dysbiosis and obesity can be ameliorated by fecal microbiota transplantation: A multiomics approach.

    No full text
    Obesity and its comorbidities are currently considered an epidemic, and the involved pathophysiology is well studied. Hypercaloric diets are tightly related to the obesity etiology and also cause alterations in gut microbiota functionality. Diet and antibiotics are known to play crucial roles in changes in the microbiota ecosystem and the disruption of its balance; therefore, the manipulation of gut microbiota may represent an accurate strategy to understand its relationship with obesity caused by diet. Fecal microbiota transplantation, during which fecal microbiota from a healthy donor is transplanted to an obese subject, has aroused interest as an effective approach for the treatment of obesity. To determine its success, a multiomics approach was used that combined metagenomics and metaproteomics to study microbiota composition and function. To do this, a study was performed in rats that evaluated the effect of a hypercaloric diet on the gut microbiota, and this was combined with antibiotic treatment to deplete the microbiota before fecal microbiota transplantation to verify its effects on gut microbiota-host homeostasis. Our results showed that a high-fat diet induces changes in microbiota biodiversity and alters its function in the host. Moreover, we found that antibiotics depleted the microbiota enough to reduce its bacterial content. Finally, we assessed the use of fecal microbiota transplantation as a complementary obesity therapy, and we found that it reversed the effects of antibiotics and reestablished the microbiota balance, which restored normal functioning and alleviated microbiota disruption. This new approach could be implemented to support the dietary and healthy habits recommended as a first option to maintain the homeostasis of the microbiota
    corecore