2 research outputs found

    ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene.

    Get PDF
    OBJECTIVES: We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND: CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS: In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS: ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling

    Genetic Basis of Severe Childhood-Onset Cardiomyopathies.

    No full text
    BACKGROUND: Childhood cardiomyopathies are progressive and often lethal disorders, forming the most common cause of heart failure in children. Despite severe outcomes, their genetic background is still poorly characterized. OBJECTIVES: The purpose of this study was to characterize the genetics of severe childhood cardiomyopathies in a countrywide cohort. METHODS: The authors collected a countrywide cohort, KidCMP, of 66 severe childhood cardiomyopathies from the sole center in Finland performing cardiac transplantation. For genetic diagnosis, next-generation sequencing and subsequent validation using genetic, cell biology, and computational approaches were used. RESULTS: The KidCMP cohort presents remarkable early-onset and severe disorders: the median age of diagnosis was 0.33 years, and 17 patients underwent cardiac transplantation. The authors identified the pathogenic variants in 39% of patients: 46% de novo, 34% recessive, and 20% dominantly-inherited. The authors report NRAP underlying childhood dilated cardiomyopathy, as well as novel phenotypes for known heart disease genes. Some genetic diagnoses have immediate implications for treatment: CALM1 with life-threatening arrhythmias, and TAZ with good cardiac prognosis. The disease genes converge on metabolic causes (PRKAG2, MRPL44, AARS2, HADHB, DNAJC19, PPA2, TAZ, BAG3), MAPK pathways (HRAS, PTPN11, RAF1, TAB2), development (NEK8 and TBX20), calcium signaling (JPH2, CALM1, CACNA1C), and the sarcomeric contraction cycle (TNNC1, TNNI3, ACTC1, MYH7, NRAP). CONCLUSIONS: Childhood cardiomyopathies are typically caused by rare, family-specific mutations, most commonly de novo, indicating that next-generation sequencing of trios is the approach of choice in their diagnosis. Genetic diagnoses may suggest intervention strategies and predict prognosis, offering valuable tools for prioritization of patients for transplantation versus conservative treatment
    corecore